当前位置: X-MOL 学术Fluid Phase Equilibr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of the Density, Viscosity and Electrical Conductivity of Aqueous Solutions Saturated in Boric Acid in presence of Lithium Sulfate or Sodium Sulfate at 293.15 to 313.15 K
Fluid Phase Equilibria ( IF 2.8 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.fluid.2020.112864
Wilson Alavia , Jorge A. Lovera , Teófilo A. Graber , Daniela Azúa , Ismael Soto

Abstract The modeling of the density, viscosity and electrical conductivity of aqueous solutions saturated with boric acid, in the presence of sodium sulfate or lithium sulfate, are presented. The salt concentrations range studied were from (0 to 3.3242) mol•kg−1 for sodium sulfate and from (0 to 2.9336) mol•kg−1 for lithium sulfate at temperatures from (293.15 to 313.15) K and at 1 atm pressure. A model for the density was derived using the Pitzer model. The Eyring's absolute rate theory and the Pitzer model were combined to represent the viscosity. The Casteel-Amis equation was modified to describe the electrical conductivity with temperature and boric acid effects where necessary. The results showed that the models successfully represented the properties studied and are robust for estimation purposes within and beyond the experimental range studied. Also, it was found that short range interactions of boric acid, sulfate, sodium and lithium ions with water molecules are relevant to determine the volumetric and transport properties of these solutions and that the electrical conductivity is determined by charged species (Na+, SO42−, NaSO4−, HSO4− and Li+, SO42−, LiSO4−) and the solution viscosity; that is mainly influenced by these salts concentrations, boric acid solubility behavior with these salts and temperature. This is valuable information to improve the processes of boric acid production.

中文翻译:

在 293.15 至 313.15 K 的硫酸锂或硫酸钠存在下,硼酸饱和水溶液的密度、粘度和电导率建模

摘要 介绍了在硫酸钠或硫酸锂存在下硼酸饱和水溶液的密度、粘度和电导率的建模。在 (293.15 到 313.15) K 的温度和 1 个大气压下,所研究的盐浓度范围为 (0 到 3.3242) mol•kg-1 硫酸钠和 (0 到 2.9336) mol•kg-1 硫酸锂。使用 Pitzer 模型推导出密度模型。Eyring 的绝对速率理论和 Pitzer 模型相结合来表示粘度。对 Casteel-Amis 方程进行了修改,以在必要时描述具有温度和硼酸效应的电导率。结果表明,这些模型成功地代表了所研究的特性,并且对于所研究的实验范围内外的估计目的是稳健的。此外,还发现硼酸、硫酸盐、钠和锂离子与水分子的短程相互作用与确定这些溶液的体积和传输特性有关,并且电导率由带电物质(Na+、SO42-、 NaSO4−、HSO4− 和 Li+、SO42−、LiSO4−) 和溶液粘度;这主要受这些盐的浓度、硼酸与这些盐的溶解度和温度的影响。这是改进硼酸生产工艺的宝贵信息。钠离子和锂离子与水分子与确定这些溶液的体积和传输特性有关,并且电导率由带电物质(Na+、SO42-、NaSO4-、HSO4- 和 Li+、SO42-、LiSO4-)决定,并且溶液粘度;这主要受这些盐的浓度、硼酸与这些盐的溶解度和温度的影响。这是改进硼酸生产工艺的宝贵信息。钠离子和锂离子与水分子与确定这些溶液的体积和传输特性有关,并且电导率由带电物质(Na+、SO42-、NaSO4-、HSO4- 和 Li+、SO42-、LiSO4-)决定,并且溶液粘度;这主要受这些盐的浓度、硼酸与这些盐的溶解度和温度的影响。这是改进硼酸生产工艺的宝贵信息。
更新日期:2021-03-01
down
wechat
bug