当前位置: X-MOL 学术Cont. Shelf Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical modeling of arctic sea ice freezing and melting based on nonlinear growth theory
Continental Shelf Research ( IF 2.1 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.csr.2020.104278
Chenglin Duan , Sheng Dong , Zhifeng Wang

Abstract The spatiotemporal distribution of sea ice in the cold Arctic region is of climatic and engineering significance. However, in terms of statistics, there remains a lack of quantitative mathematical descriptions of the annual periodic sea ice cycle for the entire Arctic and its regional seas. Using the semi-enclosed and seasonally ice-covered Kara Sea as a systematic case study, this quantitative study focuses on the theoretical mathematical expressions of the nonlinear freezing and melting processes of sea ice. The periodic cycle of sea ice coverage was divided into freezing, frozen, and melting stages, with the continuous ice-coverage curves clearly highlighting temporal nonlinearity during both freezing and melting periods. Thus, nonlinear growth theory was used to quantitatively simulate ice-coverage curves. Results from a comparison of the various functions showed the Logistic function to most accurately quantify the annual periodic cycle, followed by the Gompertz and von Bertalanffy functions, with the Negative exponential and Brody functions having the least suitable results. Further, our results indicate that net sea surface heat flux primarily contributes to the nonlinear temporal freezing and melting of sea ice in the periodic cycle. The nonlinear growth theory was also applied to other Arctic sea areas, including the Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, and Baffin Bay. By using the developed mathematical equations, we are able to quantify sea ice conditions at any given time for different Arctic sea areas.

中文翻译:

基于非线性增长理论的北极海冰冻融数学建模

摘要 北极寒冷地区海冰的时空分布具有气候和工程意义。然而,在统计上,对于整个北极及其区域海域的年度周期性海冰循环,仍然缺乏定量的数学描述。本次定量研究以半封闭、季节性冰雪覆盖的喀拉海为系统案例,重点研究海冰非线性冻结和融化过程的理论数学表达式。海冰覆盖的周期性循环分为冻结、冻结和融化阶段,连续的冰覆盖曲线清楚地突出了冻结和融化期间的时间非线性。因此,非线性增长理论被用于定量模拟冰覆盖曲线。各种函数的比较结果显示 Logistic 函数最准确地量化年度周期周期,其次是 Gompertz 和 von Bertalanffy 函数,负指数函数和 Brody 函数的结果最不合适。此外,我们的结果表明,净海面热通量主要有助于周期性循环中海冰的非线性时间冻结和融化。非线性增长理论也应用于其他北极海域,包括拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海和巴芬湾。通过使用开发的数学方程,我们能够量化不同北极海域在任何给定时间的海冰状况。其次是 Gompertz 和 von Bertalanffy 函数,负指数函数和 Brody 函数的结果最不合适。此外,我们的结果表明,净海面热通量主要有助于周期性循环中海冰的非线性时间冻结和融化。非线性增长理论也应用于其他北极海域,包括拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海和巴芬湾。通过使用开发的数学方程,我们能够量化不同北极海域在任何给定时间的海冰状况。其次是 Gompertz 和 von Bertalanffy 函数,负指数函数和 Brody 函数的结果最不合适。此外,我们的结果表明,净海面热通量主要有助于周期性循环中海冰的非线性时间冻结和融化。非线性增长理论也应用于其他北极海域,包括拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海和巴芬湾。通过使用开发的数学方程,我们能够量化不同北极海域在任何给定时间的海冰状况。我们的结果表明,净海面热通量主要促成周期性循环中海冰的非线性时间冻结和融化。非线性增长理论也应用于其他北极海域,包括拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海和巴芬湾。通过使用开发的数学方程,我们能够量化不同北极海域在任何给定时间的海冰状况。我们的结果表明,净海面热通量主要促成周期性循环中海冰的非线性时间冻结和融化。非线性增长理论也应用于其他北极海域,包括拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海和巴芬湾。通过使用开发的数学方程,我们能够量化不同北极海域在任何给定时间的海冰状况。
更新日期:2020-12-01
down
wechat
bug