当前位置: X-MOL 学术Aequat. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the balancing property of Matkowski means
Aequationes Mathematicae ( IF 0.9 ) Pub Date : 2020-10-20 , DOI: 10.1007/s00010-020-00758-7
Tibor Kiss

Let \(I\subseteq \mathbb {R}\) be a nonempty open subinterval. We say that a two-variable mean \(M:I\times I\rightarrow \mathbb {R}\) enjoys the balancing property if, for all \(x,y\in I\), the equality

$$\begin{aligned} {M\big (M(x,M(x,y)),M(M(x,y),y)\big )=M(x,y)} \end{aligned}$$(1)

holds. The above equation has been investigated by several authors. The first remarkable step was made by Georg Aumann in 1935. Assuming, among other things, that M is analytic, he solved (1) and obtained quasi-arithmetic means as solutions. Then, two years later, he proved that (1) characterizes regular quasi-arithmetic means among Cauchy means, where, the differentiability assumption appears naturally. In 2015, Lucio R. Berrone, investigating a more general equation, having symmetry and strict monotonicity, proved that the general solutions are quasi-arithmetic means, provided that the means in question are continuously differentiable. The aim of this paper is to solve (1), without differentiability assumptions in a class of two-variable means, which contains the class of Matkowski means.



中文翻译:

关于Matkowski的平衡特性

\(I \ subseteq \ mathbb {R} \)为非空打开子间隔。我们说,如果对于所有\(x,y \ I \)等于,则二元均值\(M:I \ times I \ rightarrow \ mathbb {R} \)享有均衡属性

$$ \ begin {aligned} {M \ big(M(x,M(x,y)),M(M(x,y),y)\ big)= M(x,y)} \ end {aligned } $$(1)

持有。上面的方程式已经由几位作者研究过。第一步是Georg Aumann于1935年做出的。除其他外,假设M解析性的,他求解(1)并获得了拟算术平均值作为解。然后,两年后,他证明(1)刻画了柯西方法中的常规拟算术方法的特征,其中,可微性假设自然而然地出现了。2015年,Lucio R. Berrone研究了具有对称性和严格单调性的更一般的方程,证明了一般解是准算术方法,只要所讨论的方法是连续可微的。本文的目的是解决(1)一类二元均值的情况,其中没有可微性假设,其中包含Matkowski均值类。

更新日期:2020-10-20
down
wechat
bug