当前位置: X-MOL 学术Genetics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research.
GENETICS ( IF 3.3 ) Pub Date : 2020-10-16 , DOI: 10.1534/genetics.120.303596
John Sebastian Sigmon 1 , Matthew W Blanchard 2, 3 , Ralph S Baric 4 , Timothy A Bell 2 , Jennifer Brennan 3 , Gudrun A Brockmann 5 , A Wesley Burks 6 , J Mauro Calabrese 7, 8 , Kathleen M Caron 9 , Richard E Cheney 9 , Dominic Ciavatta 2 , Frank Conlon 10 , David B Darr 8 , James Faber 9 , Craig Franklin 11 , Timothy R Gershon 12 , Lisa Gralinski 4 , Bin Gu 9 , Christiann H Gaines 2 , Robert S Hagan 13 , Ernest G Heimsath 8, 9 , Mark T Heise 2 , Pablo Hock 2 , Folami Ideraabdullah 2, 8, 14 , J Charles Jennette 15 , Tal Kafri 16, 17 , Anwica Kashfeen 1 , Mike Kulis 6 , Vivek Kumar 18 , Colton Linnertz 2 , Alessandra Livraghi-Butrico 19 , K C Kent Lloyd 20, 21, 22 , Cathleen Lutz 18 , Rachel M Lynch 2, 8 , Terry Magnuson 2, 3, 8 , Glenn K Matsushima 16, 23 , Rachel McMullan 2 , Darla R Miller 2, 8 , Karen L Mohlke 2 , Sheryl S Moy 24, 25 , Caroline E Y Murphy 2 , Maya Najarian 1 , Lori O'Brien 9 , Abraham A Palmer 26 , Benjamin D Philpot 9, 19 , Scott H Randell 9 , Laura Reinholdt 18 , Yuyu Ren 26 , Steve Rockwood 18 , Allison R Rogala 15, 27 , Avani Saraswatula 2 , Christopher M Sassetti 28 , Jonathan C Schisler 7 , Sarah A Schoenrock 2 , Ginger D Shaw 2 , John R Shorter 2 , Clare M Smith 28 , Celine L St Pierre 26 , Lisa M Tarantino 2, 29 , David W Threadgill 26, 30 , William Valdar 2 , Barbara J Vilen 16 , Keegan Wardwell 18 , Jason K Whitmire 2 , Lucy Williams 2 , Mark J Zylka 9 , Martin T Ferris 31 , Leonard McMillan 1 , Fernando Pardo Manuel de Villena 2, 3, 8
Affiliation  

The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.

中文翻译:


MiniMUGA 基因分型芯片的内容和性能:提高小鼠研究严谨性和可重复性的新工具。



实验室小鼠是生物医学研究中使用最广泛的动物模型,部分原因在于其基因组注释良好、丰富的遗传资源以及精确操纵其基因组的能力。尽管遗传学对于小鼠研究很重要,但遗传质量控制 (QC) 尚未标准化,部分原因是缺乏经济高效、信息丰富且强大的平台。基因分型芯片是小鼠研究的标准工具,即使在高通量全基因组测序时代,它仍然是一个有吸引力的替代方案。在这里,我们描述了新一代小鼠通用基因分型阵列 (MUGA) MiniMUGA 的内容和性能,MiniMUGA 是一个基于阵列的遗传 QC 平台,拥有超过 11,000 个探针。除了对大多数经典菌株和野生来源的实验室菌株进行强有力的区分之外,MiniMUGA 还被设计为包含其他平台中不具备的功能:(1) 染色体性别确定,(2) 区分来自多个商业供应商的亚菌株,(3) 诊断 SNP对于流行的实验室菌株,(4)检测基因工程小鼠中使用的构建体,以及(5)总结这些结果的易于解释的报告。所有探针的深入注释应有助于个别研究人员进行定制分析。为了确定 MiniMUGA 的性能,我们对来自各种遗传背景的 6899 个样本进行了基因分型。无论是在辨别能力还是鲁棒性方面,MiniMUGA 的性能均优于 MUGA 系列阵列的前三代产品。我们已经为 241 个近交系生成了公开的共有基因型,包括经典、野生和重组自交系。 在这里,我们还报告了在各种样本类型中检测到大量X O 和XXY个体、将降低复杂性杂交的效用扩展到 C57BL/6 以外的遗传背景的新标记,以及对 17 种遗传基因的稳健检测。构造。我们提供的初步证据表明,该芯片可用于识别部分性染色体重复和嵌合现象,并且诊断性 SNP 可用于确定近交小鼠与相关主要种群独立繁殖的时间。我们得出的结论是,MiniMUGA 是遗传质量控制的一个有价值的平台,也是提高小鼠研究的严谨性和可重复性的重要新工具。
更新日期:2020-10-16
down
wechat
bug