当前位置: X-MOL 学术Mod. Phys. Lett. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of turbulent thermal convection based on LBM
Modern Physics Letters B ( IF 1.8 ) Pub Date : 2020-10-18 , DOI: 10.1142/s0217984921500706
Yuxian Xia 1 , Yuan Fu 2 , Jiahua Li 3 , Xiang Qiu 2 , Yuehong Qian 4 , Yulu Liu 2
Affiliation  

The two-dimensional (2D) turbulent thermal convection is numerically investigated by using Lattice Boltzmann Method. The 2D turbulence is considered as 2D channel flow where the flow is forced by the arrays of adiabatic cylinders placed in the inlet and wall boundary of 2D channel, which is heated uniformly from the inlet as to inspire the paradigmatic motion of thermal convection. It is found that the spacing vortex number density distribution in the large-scale range [Formula: see text], based on the Liutex vortex definition criterion, which is in fair agreement with the Benzi prediction. The energy spectrum of the Liutex field [Formula: see text]. The scaling behavior of full-field energy spectrum in the large scale is [Formula: see text]. The temperature spectrum in the large-scale range is found to be approximate to [Formula: see text], which is according with the Bolgiano theory of 2D buoyancy driven turbulence. The energy flux cascades to the large scale, the enstrophy cascades to small scale. The moments of the energy dissipation field [Formula: see text] coarse grained at the scale [Formula: see text] have the power-law behaviors with the scale [Formula: see text]. The velocity intermittency measured by PDF exists in large-scale range of 2D turbulent thermal convection. The measured scaling exponents [Formula: see text] are determined by a lognormal formula. The measured intermittency parameter is [Formula: see text], which denotes the strong intermittency in the large-scale range of 2D turbulent thermal convection.

中文翻译:

基于LBM的湍流热对流数值模拟

二维(2D)湍流热对流采用格子玻尔兹曼方法进行数值研究。二维湍流被认为是二维通道流动,其中流动由放置在二维通道入口和壁边界的绝热圆柱阵列推动,从入口均匀加热,以激发热对流的典型运动。发现大尺度范围内的间距涡数密度分布[公式:见正文],基于Liutex涡定义准则,与Benzi预测基本吻合。Liutex场的能谱[公式:见正文]。大尺度全场能谱的标度行为是[公式:见正文]。发现大尺度范围内的温度谱近似于[公式:见正文],这与二维浮力驱动湍流的 Bolgiano 理论一致。能量流向大尺度级联,熵向小尺度级联。能量耗散场的矩[公式:见文]在尺度上粗粒度[公式:见文]具有与尺度[公式:见文]的幂律行为。PDF测量的速度间歇性存在于二维湍流热对流的大尺度范围内。测量的缩放指数 [公式:见正文] 由对数正态公式确定。测量的间歇性参数为[公式:见正文],表示二维湍流热对流在大尺度范围内的强间歇性。能量耗散场的矩[公式:见文]在尺度上粗粒度[公式:见文]具有与尺度[公式:见文]的幂律行为。PDF测量的速度间歇性存在于二维湍流热对流的大尺度范围内。测量的缩放指数 [公式:见正文] 由对数正态公式确定。测量的间歇性参数为[公式:见正文],表示二维湍流热对流在大尺度范围内的强间歇性。能量耗散场的矩[公式:见文]在尺度上粗粒度[公式:见文]具有与尺度[公式:见文]的幂律行为。PDF测量的速度间歇性存在于二维湍流热对流的大尺度范围内。测量的缩放指数 [公式:见正文] 由对数正态公式确定。测量的间歇性参数为[公式:见正文],表示二维湍流热对流在大尺度范围内的强间歇性。见文本]由对数正态公式确定。测量的间歇性参数为[公式:见正文],表示二维湍流热对流在大尺度范围内的强间歇性。见文本]由对数正态公式确定。测量的间歇性参数为[公式:见正文],表示二维湍流热对流在大尺度范围内的强间歇性。
更新日期:2020-10-18
down
wechat
bug