当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
QDLC -- The Quantum Development Life Cycle
arXiv - CS - Emerging Technologies Pub Date : 2020-10-15 , DOI: arxiv-2010.08053
Nivedita Dey, Mrityunjay Ghosh, Subhra Samir kundu, Amlan Chakrabarti

The magnificence grandeur of quantum computing lies in the inherent nature of quantum particles to exhibit true parallelism, which can be realized by indubitably fascinating theories of quantum physics. The possibilities opened by quantum computation (QC) is no where analogous to any classical simulation as quantum computers can efficiently simulate the complex dynamics of strongly correlated inter-facial systems. But, unfolding mysteries and leading to revolutionary breakthroughs in quantum computing are often challenged by lack of research and development potential in developing qubits with longer coherence interval, scaling qubit count, incorporating quantum error correction to name a few. Putting the first footstep into explorative quantum research by researchers and developers is also inherently ambiguous - due to lack of definitive steps in building up a quantum enabled customized computing stack. Difference in behavioral pattern of underlying system, early-stage noisy device, implementation barriers and performance metric cause hindrance in full adoption of existing classical SDLC suites for quantum product development. This in turn, necessitates to devise systematic and cost-effective techniques to quantum software development through a Quantum Development Life Cycle (QDLC) model, specifying the distinguished features and functionalities of quantum feasibility study, quantum requirement specification, quantum system design, quantum software coding and implementation, quantum testing and quantum software quality management.

中文翻译:

QDLC——量子开发生命周期

量子计算的壮丽之处在于量子粒子的内在性质,可以表现出真正的并行性,这可以通过令人难以置信的量子物理学理论来实现。量子计算 (QC) 带来的可能性与任何经典模拟都不相似,因为量子计算机可以有效地模拟强相关界面系统的复杂动力学。但是,在开发具有更长相干间隔的量子位、扩展量子位计数、结合量子纠错等方面缺乏研究和开发潜力,在量子计算中揭开谜团并导致革命性突破往往面临挑战。研究人员和开发人员迈出探索性量子研究的第一步本质上也是模棱两可的——因为在构建支持量子的定制计算堆栈方面缺乏明确的步骤。底层系统的行为模式、早期噪声设备、实现障碍和性能指标的差异阻碍了完全采用现有的经典 SDLC 套件进行量子产品开发。反过来,这需要通过量子开发生命周期 (QDLC) 模型为量子软件开发设计系统且具有成本效益的技术,指定量子可行性研究、量子需求规范、量子系统设计、量子软件编码的显着特征和功能和实施、量子测试和量子软件质量管理。实施障碍和性能指标会阻碍完全采用现有的经典 SDLC 套件进行量子产品开发。反过来,这需要通过量子开发生命周期 (QDLC) 模型为量子软件开发设计系统且具有成本效益的技术,指定量子可行性研究、量子需求规范、量子系统设计、量子软件编码的显着特征和功能和实施、量子测试和量子软件质量管理。实施障碍和性能指标会阻碍完全采用现有的经典 SDLC 套件进行量子产品开发。反过来,这需要通过量子开发生命周期 (QDLC) 模型为量子软件开发设计系统且具有成本效益的技术,指定量子可行性研究、量子需求规范、量子系统设计、量子软件编码的显着特征和功能和实施、量子测试和量子软件质量管理。
更新日期:2020-10-19
down
wechat
bug