当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topological Quantum Compiling with Reinforcement Learning
Physical Review Letters ( IF 8.1 ) Pub Date : 2020-10-19 , DOI: 10.1103/physrevlett.125.170501
Yuan-Hang Zhang , Pei-Lin Zheng , Yi Zhang , Dong-Ling Deng

Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate sequences with given accuracy and is generally applicable to various scenarios, independent of the hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.

中文翻译:

强化学习的拓扑量子编译

量子编译是将量子算法分解为一系列硬件兼容命令或基本门的过程,对于量子计算至关重要。我们介绍了一种基于深度强化学习的高效算法,该算法将任意单量子位门限从有限的通用集编译为一系列基本门。它以给定的精度生成接近最佳的门序列,并且通常适用于各种情况,与硬件可行的通用集无关,并且无需使用辅助量子位。为了具体起见,我们将此算法应用于斐波那契任意子的拓扑编译情况,并为任意单量子位unit获得近似最优的编织序列。我们的算法可能会延续到其他具有挑战性的量子离散问题,
更新日期:2020-10-19
down
wechat
bug