当前位置: X-MOL 学术Front. Bioeng. Biotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cold Rolling Deformation Characteristic of a Biomedical Beta Type Ti–25Nb–3Zr–2Sn–3Mo Alloy Plate and Its Influence on α Precipitated Phases and Room Temperature Mechanical Properties During Aging Treatment
Frontiers in Bioengineering and Biotechnology ( IF 4.3 ) Pub Date : 2020-10-19 , DOI: 10.3389/fbioe.2020.598529
Jun Cheng , Jinshan Li , Sen Yu , Zhaoxin Du , Xiaoyong Zhang , Wen Zhang , Jinyang Gai , Hongchuan Wang , Hongjie Song , Zhentao Yu

The microstructure characteristics and texture evolution of a biomedical metastable beta Ti–25Nb–3Zr–2Sn–3Mo (TLM; wt%) titanium alloy plate cold rolled at various reductions were studied in this article. <110> texture was easily formed in the TLM alloy plates, and a large number of dislocation tangles were generated in the β matrix in the process of cold rolling deformation. The dislocation lines, dislocation cells, subgrain boundaries, and other crystal defects introduced during cold rolling had a great impact on the morphological characteristics and volume fraction of precipitated phases during aging. These typical crystal defects could be considered as the major triggers of the formation of second phases, and they could also shorten the time of β→α phase transformation. α precipitated phases, with a size range of 150–500 nm, were formed within the β matrix in the cold deformed 34% in conjunction with the aging specimen, resulting in the relatively high tensile strength of 931 MPa and the acceptable elongation of 6.9%. When the TLM alloy plate was cold rolled at a reduction of 60% in conjunction with aging, the maximum value of ultimate strength (1,005 MPa) was achieved, but the elongation value was relatively low owing to the formation of α precipitated phases with a large size around the subgrain boundaries. In this paper, the influence of crystal defects and subgrain boundaries on the morphology characteristics and volume fraction of α precipitated phases and mechanical properties will be discussed in detail.

中文翻译:

生物医学β型Ti-25Nb-3Zr-2Sn-3Mo合金板的冷轧变形特性及其对时效处理过程中α析出相和室温力学性能的影响

本文研究了生物医学亚稳态βTi-25Nb-3Zr-2Sn-3Mo(TLM;wt%)钛合金板在不同压下情况下冷轧的微观结构特征和织构演变。TLM合金板材容易形成<110>织构,在冷轧变形过程中β基体中产生大量位错缠结。冷轧过程中引入的位错线、位错胞、亚晶界和其他晶体缺陷对时效过程中析出相的形态特征和体积分数有很大影响。这些典型的晶体缺陷可以被认为是第二相形成的主要触发因素,它们也可以缩短β→α相变的时间。α 沉淀相,尺寸范围为 150-500 nm,结合时效试样,在冷变形 34% 的 β 基体中形成了 β 基体,从而产生了 931 MPa 的相对较高的拉伸强度和 6.9% 的可接受伸长率。当 TLM 合金板冷轧 60% 时结合时效,达到了极限强度的最大值(1005 MPa),但由于形成了较大的 α 析出相,延伸率值相对较低。亚晶界附近的大小。本文将详细讨论晶体缺陷和亚晶界对α析出相的形貌特征和体积分数以及力学性能的影响。导致 931 MPa 的相对较高的拉伸强度和 6.9% 的可接受伸长率。当 TLM 合金板冷轧 60% 时结合时效,达到了极限强度的最大值(1005 MPa),但由于形成了较大的 α 析出相,延伸率值相对较低。亚晶界附近的大小。本文将详细讨论晶体缺陷和亚晶界对α析出相的形貌特征和体积分数以及力学性能的影响。导致相对较高的 931 MPa 拉伸强度和 6.9% 的可接受伸长率。当 TLM 合金板冷轧 60% 时结合时效,达到了极限强度的最大值(1005 MPa),但由于形成了较大的 α 析出相,延伸率值相对较低。亚晶界附近的大小。本文将详细讨论晶体缺陷和亚晶界对α析出相的形貌特征和体积分数以及力学性能的影响。但由于在亚晶界周围形成了大尺寸的 α 析出相,伸长率值相对较低。本文将详细讨论晶体缺陷和亚晶界对α析出相的形貌特征和体积分数以及力学性能的影响。但由于在亚晶界周围形成了大尺寸的 α 析出相,伸长率值相对较低。本文将详细讨论晶体缺陷和亚晶界对α析出相的形貌特征和体积分数以及力学性能的影响。
更新日期:2020-10-19
down
wechat
bug