当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Disks
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-10-19 , DOI: 10.1021/acsanm.0c02241
Marvin M. Jansen 1, 2 , Pujitha Perla 1, 2 , Mane Kaladzhian 1, 2 , Nils von den Driesch 1, 2 , Johanna Janßen 1, 2 , Martina Luysberg 2, 3 , Mihail I. Lepsa 2, 4 , Detlev Grützmacher 1, 2, 4 , Alexander Pawlis 1, 2
Affiliation  

The control of the crystal phase in self-catalyzed nanowires (NWs) is one of the central remaining open challenges in the research field of III/V semiconductor NWs. While several groups analyzed and revealed the growth dynamics, no experimental growth scheme has been verified yet, which reproducibly ensures the phase purity of binary self-catalyzed grown NWs. Here, we demonstrate the advanced control of self-catalyzed molecular beam epitaxy of GaAs NWs with up to a grade of 100% wurtzite (WZ) phase purity. The evolution of the most important properties during the growth, namely, the contact angle of the Ga droplet, the NW length, and the diameter is analyzed by scanning electron microscopy and transmission electron microscopy. Based on these results, we developed a comprehensive NW growth model for calculating the time-dependent evolution of the Ga droplet contact angle. Using this model, the Ga flux was dynamically modified during the growth to control and stabilize the contact angle in a certain range favoring the growth of phase-pure GaAs NWs. Although focusing on the self-catalyzed growth of WZ GaAs NWs, our model is also applicable to achieve phase-pure zinc blende (ZB) NWs and can be easily generalized to other III/V compounds. The self-catalyzed growth of such NWs may pave the way for substantial improvement of GaAs NW laser devices, the controlled growth of WZ/ZB quantum disks, and novel heterostructured core/multishell NW systems with a pristine crystalline order.

中文翻译:

通过自催化选择区分子束外延生长的纯相纤锌矿GaAs纳米线,用于先进的激光器件和量子盘

自催化纳米线(NWs)中晶相的控制是III / V半导体NWs研究领域中仍然存在的主要挑战之一。虽然几个小组分析并揭示了生长动力学,但尚未验证任何实验性生长方案,该方案可重复地确保二元自催化生长的净水的相纯度。在这里,我们展示了具有高达100%纤锌矿(WZ)相纯度等级的GaAs NWs的自催化分子束外延的先进控制。通过扫描电子显微镜和透射电子显微镜分析生长过程中最重要的性质的演变,即Ga液滴的接触角,NW长度和直径。根据这些结果,我们开发了一个综合的NW生长模型,用于计算Ga液滴接触角随时间的变化。使用该模型,可以在生长过程中动态修改Ga流量,以将接触角控制在一定范围内并将其稳定在有利于纯GaAs NWs生长的范围内。尽管着眼于WZ GaAs NW的自催化生长,我们的模型也适用于实现相纯锌共混物(ZB)NW,并且可以轻松地推广到其他III / V化合物。这类NW的自催化生长可能为GaAs NW激光器件的实质性改进,WZ / ZB量子盘的受控生长以及具有原始晶序的新型异质结构核/多壳NW系统铺平道路。在生长过程中,Ga的通量被动态修改,以将接触角控制在一定范围内并稳定在一定范围内,从而有利于纯GaAs NWs的生长。尽管着眼于WZ GaAs NW的自催化生长,我们的模型也适用于实现相纯锌共混物(ZB)NW,并且可以轻松地推广到其他III / V化合物。这类NW的自催化生长可能为GaAs NW激光器件的实质性改进,WZ / ZB量子盘的受控生长以及具有原始晶序的新型异质结构核/多壳NW系统铺平道路。在生长过程中,Ga的通量被动态修改,以将接触角控制在一定范围内并稳定在一定范围内,从而有利于纯GaAs NWs的生长。尽管着眼于WZ GaAs NW的自催化生长,我们的模型也适用于实现相纯锌共混物(ZB)NW,并且可以轻松地推广到其他III / V化合物。这类NW的自催化生长可能为GaAs NW激光器件的实质性改进,WZ / ZB量子盘的受控生长以及具有原始晶序的新型异质结构核/多壳NW系统铺平道路。我们的模型也适用于实现纯锌共混物(ZB)NW,并且可以很容易地推广到其他III / V化合物。这类NW的自催化生长可能为GaAs NW激光器件的实质性改进,WZ / ZB量子盘的受控生长以及具有原始晶序的新型异质结构核/多壳NW系统铺平道路。我们的模型也适用于实现纯锌共混物(ZB)NW,并且可以很容易地推广到其他III / V化合物。这类NW的自催化生长可能为GaAs NW激光器件的实质性改进,WZ / ZB量子盘的受控生长以及具有原始晶序的新型异质结构核/多壳NW系统铺平道路。
更新日期:2020-11-25
down
wechat
bug