当前位置: X-MOL 学术Eur. J. Environ. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupled hydro-chemo-mechanical model for fault activation under reactive fluid injection
European Journal of Environmental and Civil Engineering ( IF 2.1 ) Pub Date : 2020-10-19 , DOI: 10.1080/19648189.2020.1832583
H. Tounsi 1 , A. Pouya 1 , J. Rohmer 2
Affiliation  

Abstract

Pre-existing faults cross-cutting caprock formations constitute potential leakage pathways during geological CO2 sequestration. When the fault filling material is calcite-rich, dissolution of the fault minerals is expected to occur causing the mechanical weakening of the fault or, even worse, its reactivation. In turn, these chemical-mechanical processes influence the distribution of pore pressure in the vicinity of the fault. Hence, a fully coupled approach including the chemically-induced alteration is necessary while investigating fault’s mechanical stability.

In this paper, we present a simplified set of equations that allows the resolution of the coupled hydro-chemo-mechanical problem of reactive fluid flow inside a fault. Empirical relationships are used to describe the change of the fault’s material mechanical properties with porosity. The derived model was used to simulate the evolution of the hydro-chemo-mechanical behavior of a fault following an expected leakage scenario during CO2 storage in the Dogger formation in the Paris Basin.

The simulation results showed that under normal conditions, fault reactivation is unlikely to happen even in the long term (∼100 years). Nevertheless, the proposed model is capable of capturing the evolution of fault reactivation and has the potential to become a useful element of the toolbox for assessing the risks related to fault reactivation and leakage for CO2 storage projects.



中文翻译:

反应流体注入下故障激活的水-化学-力学耦合模型

摘要

先前存在的断层横穿盖层地层构成了地质CO 2固存过程中的潜在泄漏途径。当断层填充材料富含方解石时,预计会发生断层矿物的溶解,从而导致断层的机械弱化,或更糟糕的是其再活化。反过来,这些化学-机械过程会影响断层附近孔隙压力的分布。因此,在研究断层的机械稳定性时,必须采用包括化学诱导变化的完全耦合方法。

在本文中,我们提出了一组简化的方程组,该方程组可以解决故障内部反应流体的耦合水-化学-机械问题。经验关系用来描述断层的材料机械性能随孔隙度的变化。派生模型用于模拟在巴黎盆地Dogger地层中CO 2封存过程中,在预期的泄漏情况之后,断层的水化学力学行为的演变。

仿真结果表明,在正常条件下,即使在长期(约100年)内也不太可能发生故障重新激活。然而,所提出的模型能够捕获故障再激活的演变,并有可能成为评估与CO 2储存项目的故障再激活和泄漏相关的风险的工具箱的有用元素。

更新日期:2020-10-19
down
wechat
bug