当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2020-10-19 , DOI: 10.1002/adhm.202000892
Amanda K. Pearce 1, 2 , Akosua B. Anane‐Adjei 2 , Robert J. Cavanagh 2 , Patricia F. Monteiro 2 , Thomas M. Bennett 3 , Vincenzo Taresco 2 , Phil A. Clarke 4 , Alison A. Ritchie 4 , Morgan R. Alexander 2 , Anna M. Grabowska 4 , Cameron Alexander 2
Affiliation  

The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar‐like architectures based on 2‐hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox‐responsive biodegradation on biological transport are investigated. Variations in “stealth” behavior between the materials are quantified in vitro and in vivo, whereby reduction‐responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.

中文翻译:

聚合物3D结构,尺寸和化学性质对体外和原位三阴性乳腺癌模型中生物转运和药物传递的影响

药物递送颗粒的大小,形状和基本化学性质是决定其体内最终性能的关键参数。响应性颗粒对于触发药物递送而言是理想的,可通过改变结构和生物降解来控制体内命运来实现。在此,基于2-羟丙基甲基丙烯酰胺(HPMA)合成具有线性,超支化,星形和胶束状结构的聚合物材料,并研究了3D结构和氧化还原响应性生物降解对生物转运的影响。在材料之间的“隐身”行为变化可在体内和体外进行定量,因此,具有还原反应的超支化聚合物最成功地避免了肝脏内的积累,而且没有一种材料可靶向脾脏或肺部。在2D和3D体外模型中,选定的结构用阿霉素(DOX)的功能表现出比游离药物更高的功效,并且在考虑到载体的生物分布的时间表内给药时,在高度侵袭性原位乳腺癌模型中的体内功效更高。这些数据表明,可以通过调节3D结构将相同化学物质的材料导入不同的细胞和生理区域,因此,这项工作总体上为如何定制纳米颗粒结构和程序化降解以引发特定的生物学反应提供了有价值的新见解。用于药物输送。当按时间表给药时,考虑到载体的生物分布,在高度侵袭性原位乳腺癌模型中具有更高的体内功效。这些数据表明,可以通过调节3D结构将相同化学物质的材料导入不同的细胞和生理区域,因此,这项工作总体上为如何定制纳米颗粒结构和程序化降解以引发特定的生物学反应提供了有价值的新见解。用于药物输送。当按时间表给药时,考虑到载体的生物分布,在高度侵袭性原位乳腺癌模型中具有更高的体内功效。这些数据表明,可以通过调节3D结构将相同化学物质的材料导入不同的细胞和生理区域,因此,这项工作总体上为如何定制纳米颗粒结构和程序化降解以引发特定的生物学反应提供了有价值的新见解。用于药物输送。
更新日期:2020-11-18
down
wechat
bug