当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics
Ocean Engineering ( IF 4.6 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.oceaneng.2020.108193
Jialei Zhang , Xianbo Xiang , Qin Zhang , Weijia Li

Abstract In this paper neural-network (NN) based adaptive trajectory tracking control scheme has been designed for underactuated Autonomous Underwater Vehicles (AUVs) which are subjected to unknown asymmetrical actuator saturation and unknown dynamics. First, some control preliminaries and assumptions along with AUV kinematic & kinetic models and trajectory tracking problems are elaborated. Secondly, the tracking error model and tracking guidance law are derived based on the theory of relative motion and the principle of approach angle respectively. Then the kinematic controller is designed by using the backstepping technique and Lyapunov theory. Similarly, AUV kinetic controller is designed by using the NN compensation and adaptive estimation techniques which is termed as NN-based adaptive controller (NNAC). Pertinently, a novel bounded saturation function has been developed to describe the unknown asymmetrical actuator saturation. The NN is adopted to approximate the complex AUV hydrodynamics and differential of desired tracking velocities. The bound of the generalized disturbance, which is composed of NN approximation error and ocean disturbances, are approximated based on the adaptive estimation technique. To analyze the stability of the developed NNAC, Lyapunov theory and backstepping technique are utilized by considering the control actions on different saturation sections. Finally, effectiveness and superiority of the proposed NNAC are validated through two sets of comparative simulation studies.

中文翻译:

基于神经网络的欠驱动AUV自适应轨迹跟踪控制,不对称致动器饱和度未知,动力学未知

摘要 在本文中,基于神经网络 (NN) 的自适应轨迹跟踪控制方案设计用于欠驱动自主水下航行器 (AUV),这些车辆受到未知的不对称致动器饱和和未知的动力学影响。首先,阐述了一些控制预备知识和假设以及 AUV 运动学和动力学模型以及轨迹跟踪问题。其次,分别基于相对运动理论和接近角原理推导出跟踪误差模型和跟踪制导规律。然后利用反步法和李雅普诺夫理论设计了运动控制器。类似地,AUV 动力学控制器是通过使用神经网络补偿和自适应估计技术设计的,称为基于神经网络的自适应控制器(NNAC)。有针对性地,已经开发了一种新的有界饱和函数来描述未知的不对称致动器饱和。采用神经网络来近似复杂的 AUV 流体动力学和所需跟踪速度的差异。基于自适应估计技术逼近由NN逼近误差和海洋扰动组成的广义扰动的界限。为了分析所开发的 NNAC 的稳定性,利用李雅普诺夫理论和反推技术,通过考虑不同饱和段的控制作用。最后,通过两组比较模拟研究验证了所提出的 NNAC 的有效性和优越性。采用神经网络来近似复杂的 AUV 流体动力学和所需跟踪速度的差异。基于自适应估计技术逼近由NN逼近误差和海洋扰动组成的广义扰动的界限。为了分析所开发的 NNAC 的稳定性,利用李雅普诺夫理论和反推技术,通过考虑不同饱和段的控制作用。最后,通过两组比较模拟研究验证了所提出的 NNAC 的有效性和优越性。采用神经网络来近似复杂的 AUV 流体动力学和所需跟踪速度的差异。基于自适应估计技术逼近由NN逼近误差和海洋扰动组成的广义扰动的界限。为了分析所开发的 NNAC 的稳定性,利用李雅普诺夫理论和反推技术,通过考虑不同饱和段的控制作用。最后,通过两组比较模拟研究验证了所提出的 NNAC 的有效性和优越性。通过考虑对不同饱和段的控制作用,利用李雅普诺夫理论和反推技术。最后,通过两组比较模拟研究验证了所提出的 NNAC 的有效性和优越性。通过考虑对不同饱和段的控制作用,利用李雅普诺夫理论和反推技术。最后,通过两组比较模拟研究验证了所提出的 NNAC 的有效性和优越性。
更新日期:2020-12-01
down
wechat
bug