当前位置: X-MOL 学术Microbiol. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation
Microbiological Research ( IF 6.1 ) Pub Date : 2020-10-18 , DOI: 10.1016/j.micres.2020.126626
Rabisa Zia 1 , Muhammad Shoib Nawaz 1 , Muhammad Jawad Siddique 1 , Sughra Hakim 1 , Asma Imran 2
Affiliation  

In many regions of the world, the incidence and extent of drought spells are predicted to increase which will create considerable pressure on global agricultural yields. Most likely among all the abiotic stresses, drought has the strongest effect on soil biota and plants along with complex environmental effects on other ecological systems. Plants being sessile appears the least resilient where drought creates osmotic stress, limits nutrient mobility due to soil heterogeneity, and reduces nutrient access to plant roots. Drought tolerance is a complex quantitative trait controlled by many genes and is one of the difficult traits to study and characterize. Nevertheless, existing studies on drought have indicated the mechanisms of drought resistance in plants on the morphological, physiological, and molecular basis and strategies have been devised to cope with the drought stress such as mass screening, breeding, marker-assisted selection, exogenous application of hormones or osmoprotectants and or engineering for drought resistance. These strategies have largely ignored the role of the rhizosphere in the plant's drought response. Studies have shown that soil microbes have a substantial role in modulation of plant response towards biotic and abiotic stress including drought. This response is complex and involves alteration in host root system architecture through hormones, osmoregulation, signaling through reactive oxygen species (ROS), induction of systemic tolerance (IST), production of large chain extracellular polysaccharides (EPS), and transcriptional regulation of host stress response genes.

This review focuses on the integrated rhizosphere management strategy for drought stress mitigation in plants with a special focus on rhizosphere management. This combinatorial approach may include rhizosphere engineering by addition of drought-tolerant bacteria, nanoparticles, liquid nano clay (LNC), nutrients, organic matter, along with plant-modification with next-generation genome editing tool (e.g., CRISPR/Cas9) for quickly addressing emerging challenges in agriculture. Furthermore, large volumes of rainwater and wastewater generated daily can be smartly recycled and reused for agriculture. Farmers and other stakeholders will get a proper knowledge-exchange and an ideal road map to utilize available technologies effectively and to translate the measures into successful plant-water stress management. The proposed approach is cost-effective, eco-friendly, user-friendly, and will impart long-lasting benefits on agriculture and ecosystem and reduce vulnerability to climate change.



中文翻译:

干旱胁迫下的植物存活:缓解胁迫的意义,适应性响应和综合根际管理策略

在世界许多地区,干旱时期的发生率和范围预计将增加,这将对全球农业产量造成相当大的压力。在所有非生物胁迫中,干旱对土壤生物和植物的影响最强,对其他生态系统的环境影响也最复杂。在干旱造成渗透胁迫,由于土壤异质性限制养分流动性以及减少养分进入植物根部的情况下,无草植物的抗逆性最低。耐旱性是受许多基因控制的复杂的数量性状,是研究和表征的困难性状之一。但是,现有的干旱研究表明植物在形态,生理,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱,抗旱。已经设计了分子基础和策略来应对干旱胁迫,例如大规模筛选,育种,标记辅助选择,激素或渗透保护剂的外源应用和/或抗旱工程。这些策略在很大程度上忽略了根际在植物干旱反应中的作用。研究表明,土壤微生物在调节植物对包括干旱在内的生物和非生物胁迫的反应中具有重要作用。这种反应很复杂,涉及通过激素,渗透调节,通过活性氧(ROS)传导,全身耐受(IST)诱导,大链细胞外多糖(EPS)产生以及宿主应激的转录调控等宿主根系体系结构的改变。反应基因。

这篇综述着重于用于减轻植物干旱胁迫的综合根际管理策略,特别侧重于根际管理。这种组合方法可能包括通过添加耐旱细菌,纳米颗粒,液态纳米粘土(LNC),营养物质,有机物质以及利用下一代基因组编辑工具对植物进行修饰(例如,CRISPR / Cas9),以快速解决农业方面的新挑战。此外,每天产生的大量雨水和废水可以巧妙地回收利用,再用于农业。农民和其他利益相关者将获得适当的知识交流和理想的路线图,以有效地利用可用技术并将这些措施转化为成功的植物水分胁迫管理。拟议的方法具有成本效益,生态友好,用户友好的特点,并将为农业和生态系统带来长期利益,并减少对气候变化的脆弱性。

更新日期:2020-10-29
down
wechat
bug