当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing
Additive Manufacturing ( IF 10.3 ) Pub Date : 2020-10-19 , DOI: 10.1016/j.addma.2020.101641
N.S. Johnson , P.S. Vulimiri , A.C. To , X. Zhang , C.A. Brice , B.B. Kappes , A.P. Stebner

In metals additive manufacturing (AM), materials and components are concurrently made in a single process as layers of metal are fabricated on top of each other in the near-final topology required for the end-use product. Consequently, tens to hundreds of materials and part design degrees of freedom must be simultaneously controlled and understood; hence, metals AM is a highly interdisciplinary technology that requires synchronized consideration of physics, chemistry, materials science, physical metallurgy, computer science, electrical engineering, and mechanical engineering. The use of modern machine learning approaches to model these degrees of freedom can reduce the time and cost to elucidate the science of metals AM and to optimize the engineering of these complex, multidisciplinary processes. New machine learning techniques are not needed for most metals AM development; those used in other sects of materials science will also work for AM. Most prolifically, the density functional theory (DFT) community has used many of them since the early 2000s for evaluating numerous combinations of elements and crystal structures to discover new materials. This materials technologies-focused review introduces the basic mathematics and terminology of machine learning through the lens of metals AM, and then examines potential uses of machine learning to advance metals AM, highlighting the many parallels to previous efforts in materials science and manufacturing while also discussing new challenges and adaptations specific to metals AM.



中文翻译:

特邀评论:金属增材制造中材料开发的机器学习

在金属增材制造(AM)中,材料和组件是在单个过程中同时制造的,因为金属层是按照最终用途产品所需的近乎最终的拓扑结构彼此叠加地制造的。因此,必须同时控制和理解数十至数百种材料和零件设计的自由度。因此,金属增材制造是一种高度跨学科的技术,需要同步考虑物理,化学,材料科学,物理冶金,计算机科学,电气工程和机械工程。使用现代机器学习方法对这些自由度进行建模可以减少阐明金属增材制造科学并优化这些复杂,多学科过程的工程设计的时间和成本。大多数金属增材制造的开发不需要新的机器学习技术。其他材料科学领域中使用的那些也将适用于增材制造。最有说服力的是,自2000年代初以来,密度泛函理论(DFT)社区已使用其中的许多方法来评估元素和晶体结构的多种组合以发现新材料。这次以材料技术为重点的综述通过金属增材制造的角度介绍了机器学习的基本数学和术语,然后研究了机器学习在促进金属增材制造方面的潜在用途,着重介绍了与先前在材料科学和制造方面所做的许多相似之处,同时还讨论了针对金属增材制造的新挑战和适应。自2000年代初以来,密度泛函理论(DFT)社区已使用其中的许多方法来评估元素和晶体结构的多种组合以发现新材料。这次以材料技术为重点的综述通过金属增材制造的角度介绍了机器学习的基本数学和术语,然后研究了机器学习在促进金属增材制造方面的潜在用途,着重介绍了与先前在材料科学和制造方面所做的许多相似之处,同时还讨论了针对金属增材制造的新挑战和适应。自2000年代初以来,密度泛函理论(DFT)社区已使用其中的许多方法来评估元素和晶体结构的多种组合以发现新材料。这次以材料技术为重点的综述通过金属增材制造的角度介绍了机器学习的基本数学和术语,然后研究了机器学习在促进金属增材制造方面的潜在用途,着重介绍了与先前在材料科学和制造方面所做的许多相似之处,同时还讨论了针对金属增材制造的新挑战和适应。

更新日期:2020-10-30
down
wechat
bug