当前位置: X-MOL 学术Clim. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Variability in the global energy budget and transports 1985–2017
Climate Dynamics ( IF 3.8 ) Pub Date : 2020-09-17 , DOI: 10.1007/s00382-020-05451-8
Chunlei Liu , Richard P. Allan , Michael Mayer , Patrick Hyder , Damien Desbruyères , Lijing Cheng , Jianjun Xu , Feng Xu , Yu Zhang

The study of energy flows in the Earth system is essential for understanding current climate change. To understand how energy is accumulating and being distributed within the climate system, an updated reconstruction of energy fluxes at the top of atmosphere, surface and within the atmosphere derived from observations is presented. New satellite and ocean data are combined with an improved methodology to quantify recent variability in meridional and ocean to land heat transports since 1985. A global top of atmosphere net imbalance is found to increase from 0.10 ± 0.61 W m−2 over 1985–1999 to 0.62 ± 0.1 W m−2 over 2000–2016, and the uncertainty of ± 0.61 W m−2 is related to the Argo ocean heat content changes (± 0.1 W m−2) and an additional uncertainty applying prior to 2000 relating to homogeneity adjustments. The net top of atmosphere radiative flux imbalance is dominated by the southern hemisphere (0.36 ± 0.04 PW, about 1.41 ± 0.16 W m−2) with an even larger surface net flux into the southern hemisphere ocean (0.79 ± 0.16 PW, about 3.1 ± 0.6 W m−2) over 2006–2013. In the northern hemisphere the surface net flux is of opposite sign and directed from the ocean toward the atmosphere (0.44 ± 0.16 PW, about 1.7 ± 0.6 W m−2). The sea ice melting and freezing are accounted for in the estimation of surface heat flux into the ocean. The northward oceanic heat transports are inferred from the derived surface fluxes and estimates of ocean heat accumulation. The derived cross-equatorial oceanic heat transport of 0.50 PW is higher than most previous studies, and the derived mean meridional transport of 1.23 PW at 26° N is very close to 1.22 PW from RAPID observation. The surface flux contribution dominates the magnitude of the oceanic transport, but the integrated ocean heat storage controls the interannual variability. Poleward heat transport by the atmosphere at 30° N is found to increase after 2000 (0.17 PW decade−1). The multiannual mean (2006–2013) transport of energy by the atmosphere from ocean to land is estimated as 2.65 PW, and is closely related to the ENSO variability.



中文翻译:

1985-2017年全球能源预算和运输中的变化

研究地球系统中的能量流对于理解当前的气候变化至关重要。为了了解能量如何在气候系统中累积和分布,我们提供了根据观测结果得出的,在大气顶部,地表以及大气内部的能量通量的最新重构。自1985年以来,新的卫星和海洋数据与改进的方法相结合,以量化子午线和海洋到陆地热传输的近期变化。发现全球最高净大气不平衡度从1985-1999年的0.10±0.61 W m -2增加到2000– 2016年期间为0.62±0.1 W m -2,不确定度为±0.61 W m -2与Argo海洋热量含量变化有关(±0.1 W m -2)以及2000年之前适用于同质性调整的其他不确定性。大气辐射通量不平衡的净顶部主要由南半球(0.36±0.04 PW,约1.41±0.16 W m -2)决定,而进入南半球海洋的表面净通量更大(0.79±0.16 PW,约3.1± 2006年至2013年期间为0.6 W m -2)。在北半球,表面净通量具有相反的符号,并从海洋指向大气(0.44±0.16 PW,约1.7±0.6 W m -2)。海冰的融化和冻结是估计进入海洋的表面热通量的原因。从导出的地表通量和海洋热量积聚的估计值可以推断出向北的海洋热传输。从RAPID观测得到的0.50 PW的跨赤道海洋热传输比以前的大多数研究都高,在26°N时的1.23 PW的平均经向传输非常接近1.22 PW。地表通量的贡献主导着海洋运输的规模,但是综合的海洋储热控制着年际变化。在2000年之后,大气中30°N的极热传输增加(0.17 PW十进制-1)。大气从海洋到陆地的多年平均能量传输(2006-2013年)估计为2.65 PW,与ENSO的变化密切相关。

更新日期:2020-10-19
down
wechat
bug