当前位置: X-MOL 学术Bull. Earthquake Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seismic effectiveness and robustness of tuned mass dampers versus nonlinear energy sinks in a lifecycle cost perspective
Bulletin of Earthquake Engineering ( IF 3.8 ) Pub Date : 2020-10-19 , DOI: 10.1007/s10518-020-00973-2
Emiliano Matta

Tuned mass dampers (TMDs) and nonlinear energy sinks (NESs) are two viable options for passively absorbing structural vibrations. In seismic applications, a trade-off exists in their performance, because TMDs’ effectiveness varies with the structural stiffness while NESs’ effectiveness varies with the earthquake intensity. To investigate this trade-off systematically, a lifecycle cost- (LCC-) oriented robust analysis and design method is here proposed, in which the effectiveness of a solution is measured by the reduction it entails in the expected cost of future seismic losses. In it, structural stiffness variability is modelled using a worst-case approach with lower and upper bounds, while seismic intensity variability is inherently captured by the incremental dynamic analyses underlying every LCC evaluation. The resulting worst-case lifetime cost provides a rational metric for discussing pros and cons of TMDs and NESs, and becomes the objective function for their robust optimization. The method is applied to the design of TMDs and NESs on a variety of single- and multi-story linear building models, located in a moderate-to-high seismic hazard region. Mass ratios from 1 to 10% and structural stiffness reductions up to 4 times are considered. Results show that TMDs are consistently more effective than NESs even in the presence of large stiffness reductions, provided that structural stiffness uncertainty is considered in design. They also show that a conventional robust H design provides for TMDs a solution which is very close to that obtained by minimizing the proposed LCC metric.



中文翻译:

在生命周期成本方面,调谐质量阻尼器与非线性能量吸收器的抗震性和鲁棒性

调谐质量阻尼器(TMD)和非线性能量吸收器(NESs)是被动吸收结构振动的两个可行选择。在地震应用中,其性能存在折衷,因为TMD的有效性随结构刚度而变化,而NES的有效性随地震强度而变化。为了系统地研究这种折衷,本文提出了一种面向生命周期成本(LCC)的鲁棒分析和设计方法,其中,通过降低解决方案的有效性来衡量解决方案的有效性,该解决方案减少了未来地震损失的预期成本。在该模型中,结构刚度的可变性是使用最坏情况下界和上限来建模的,而地震烈度的可变性是通过每个LCC评估基础的增量动态分析固有地捕获的。由此产生的最坏情况下的生命周期成本为讨论TMD和NES的优缺点提供了合理的衡量标准,并成为其鲁棒优化的目标函数。该方法适用于位于中高地震危险区的各种单层和多层线性建筑模型的TMD和NESs的设计。质量比从1%到10%,结构刚度降低了4倍。结果表明,即使在设计中考虑到结构刚度不确定性的情况下,即使存在较大的刚度降低,TMD始终比NES更有效。他们还表明,传统的鲁棒H 该方法适用于位于中高地震危险区的各种单层和多层线性建筑模型的TMD和NESs的设计。质量比为1%至10%,结构刚度降低了4倍。结果表明,即使在设计中考虑到结构刚度不确定性的情况下,即使存在较大的刚度降低,TMD始终比NES更有效。他们还表明,传统的鲁棒H 该方法适用于位于中高地震危险区的各种单层和多层线性建筑模型的TMD和NESs的设计。质量比从1%到10%,结构刚度降低了4倍。结果表明,即使在设计中考虑到结构刚度不确定性的情况下,即使存在较大的刚度降低,TMD始终比NES更有效。他们还表明,传统的鲁棒H 只要在设计中考虑结构刚度不确定性。他们还表明,传统的鲁棒H 只要在设计中考虑结构刚度不确定性。他们还表明,传统的鲁棒H设计为TMD提供了一种解决方案,该解决方案与通过最小化建议的LCC度量获得的解决方案非常接近。

更新日期:2020-10-19
down
wechat
bug