当前位置: X-MOL 学术Int. J. Uncertain. Quantif. › 论文详情
Kernel optimization for Low-Rank Multi-Fidelity Algorithms
International Journal for Uncertainty Quantification ( IF 4.911 ) Pub Date : 2020-10-01 , DOI: 10.1615/int.j.uncertaintyquantification.2020033212
Mani Razi; Mike Kirby; Akil Narayan

One of the major challenges for low-rank multi-fidelity (MF) approaches is the assumption that low-fidelity (LF) and high-fidelity (HF) models admit ``similar'' low-rank kernel representations. Low-rank MF methods have traditionally attempted to exploit low-rank representations of \emph{linear} kernels. However, such linear kernels may not be able to capture low-rank behavior, and they may admit LF and HF kernels that are not similar. Such a situation renders a naive approach to low-rank MF procedures ineffective. In this paper, we propose a novel approach for the selection of a near-optimal kernel function for use in low-rank MF methods. The proposed framework is a two-step strategy wherein: (1) hyperparameters of a library of kernel functions are optimized, and (2) a particular combination of of the optimized kernels is selected, through either a convex mixture (Additive Kernel Approach) or through a data-driven optimization (Adaptive Kernel Approach). The two resulting methods for this generalized framework both utilize only the available inexpensive low-fidelity data and thus no evaluation of high-fidelity simulation model is needed until a kernel is chosen. These proposed approaches are tested on five non-trivial real-world problems including multi-fidelity surrogate modeling for one- and two-species molecular systems, gravitational many-body problem, associating polymer networks, plasmonic nano-particle arrays, and an incompressible flow in channels with stenosis. The results for these numerical experiments demonstrate the numerical stability efficiency of both proposed kernel function selection procedures, as well as high accuracy of their resultant predictive mode
更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
西北大学
大连理工大学
湖南大学
华东师范大学
王要兵
浙江大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
李霄鹏
廖矿标
试剂库存
down
wechat
bug