当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to “Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks”
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-10-16 , DOI: 10.1021/jacs.0c10406
Bruno Marco-Dufort , Ramon Iten , Mark W. Tibbitt

The “concentration of functional groups, c,” was defined incorrectly on page S18 of the Supporting Information. The correct definition is as follows: c is the concentration of functional groups of one of the two network components, assuming that both components are present in equal amounts. Therefore, in a network formed from tetrafunctional macromers (f = 4) and where the total molar concentration of macromers is [PEG], c = f[PEG]/2 = 4[PEG]/2 = 2[PEG]. In the original Supporting Information, we took c as the total concentration of functional groups in the network, resulting in c = 4[PEG]. This formula was incorrect and resulted in erroneous values for select Keq or Gp data reported in Table 1 (page 15374) and Figure 8 (page 15381). The corrected Table 1 and Figure 8 are shown below, and the SI has been corrected accordingly. Keq, Gp, and ΔrG° were determined for the PEG–PBA/GL system (pH 8, 10 wt %) by molecular spectroscopy (fluorescence and 1H NMR), rheology, and DFT, respectively. Values that were measured directly are highlighted in bold. The rest of the values were converted from the values in bold using eqs 2 and 3. All experimental measurements are reported as triplicates with the mean ± standard deviation. Figure 8. Thermodynamics at the junctions of DCvNs probed by rheological measurements as a function of temperature. The plateau modulus, Gp, was measured at different temperatures and pH in the (a) PEG–PBA/GL and (d) PEG–PBA/ND systems (10 wt %; γ = 1%). (b, e) The rheological data were fitted to the dynamic model, yielding at each pH the reaction Gibbs free energy, ΔrG°. Subsequently, the equilibrium constant, Keq, was calculated using eq 3. (c, f) ΔrG° and Keq, obtained from the rheological model, were compared to Keq, determined at the same pH from the fluorescence-based competitive displacement assay (25 °C). In addition, some of these data that are quoted in the article should be changed as follows (with the corrected values highlighted in bold). On page 15374: “Keq,c = 37.5 when c = 0.02 M,” “Keq was determined to be 540 ± 65. [···] corresponding to Gp = 10.9 ± 2.0 kPa,” and “Keq was quantified as 277 ± 37 from NMR and 323 from DFT, corresponding to Gp = 8.0 ± 0.8 and 9.0 kPa, respectively.” On page 15381: “The rheometric data exhibited a similar increase in Keq from 75 at pH 6 to 10750 at pH 9 (Figure 8c)” and “At pH 9, Keq = 1126 ± 108 and 565 (from spectroscopy and rheology, respectively) and then decreased sharply at pH 10 to Keq = 112 and 120 (Figure 8e,f).” On page 15373 (in the Figure 2 caption): “Keq = 540 ± 65.” These corrections do not affect any of the conclusions of the article but only the exact value of select parameters. We apologize for these errors and for any inconvenience caused to the readers. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c10406.
  • Synthesis, sample preparation, computational and experimental methods, and model descriptions (PDF)
Synthesis, sample preparation, computational and experimental methods, and model descriptions (PDF) Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html. This article has not yet been cited by other publications. Figure 8. Thermodynamics at the junctions of DCvNs probed by rheological measurements as a function of temperature. The plateau modulus, Gp, was measured at different temperatures and pH in the (a) PEG–PBA/GL and (d) PEG–PBA/ND systems (10 wt %; γ = 1%). (b, e) The rheological data were fitted to the dynamic model, yielding at each pH the reaction Gibbs free energy, ΔrG°. Subsequently, the equilibrium constant, Keq, was calculated using eq 3. (c, f) ΔrG° and Keq, obtained from the rheological model, were compared to Keq, determined at the same pH from the fluorescence-based competitive displacement assay (25 °C). The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c10406.
  • Synthesis, sample preparation, computational and experimental methods, and model descriptions (PDF)
Synthesis, sample preparation, computational and experimental methods, and model descriptions (PDF) Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.


中文翻译:

对“将分子行为与理想动态共价网络中的宏观特性联系起来”的更正

在“支持信息”的第S18页上,“功能组的浓度c ”定义不正确。正确的定义如下:c两个网络组件之一的官能团的浓度,假定两个组件的存在量相等。因此,在由四官能大分子单体(f= 4)形成并且大分子单体的总摩尔浓度为[PEG]的网络中,cf [PEG] / 2 = 4 [PEG] / 2 = 2 [PEG]。在原始的支持信息中,我们将c表示为网络中官能团的浓度,得出c = 4 [PEG]。该公式不正确,导致表1(第15374页)和图8(第15381页)中报告的所选K eqG p数据的值有误。校正后的表1和图8如下所示,并且对SI进行了相应的校正。K eqG pΔr G °通过分子光谱法(荧光和1光谱)测定PEG–PBA / GL系统(pH 8,10 wt%)1 H NMR),流变学和DFT。直接测量的值以粗体突出显示。其余的值使用等式23从粗体值转换而来。所有实验测量结果均一式三份报告,均值±标准偏差。图8.通过流变学测量探测的DCvNs交界处的热力学与温度的关系。在(a)PEG-PBA / GL和(d)PEG-PBA / ND系统(10 wt%;γ= 1%)中,在不同的温度和pH下测量了平台模量G p。(b,e)流变数据拟合到动力学模型,在每个pH值下产生反应吉布斯自由能Δr G °。随后,平衡常数K当量,使用等式3(C,F)Δ计算ř ģ °和ķ当量,从流变学模型获得,进行比较,以ķ当量,在从基于荧光的竞争性置换测定法(25℃下的相同的pH测定)。此外,本文中引用的某些数据应作如下更改(校正后的值以粗体突出显示)。在15374页上:“当c = 0.02 M时,K eq,c = 37.5,”“确定K eq540±65。[···]对应于G p = 10.9±2.0千帕,”和‘ ķ当量定量为从NMR 277±37和323从DFT,对应于G ^ p = 8.0±0.89.0分别千帕,’。在第15381页上:“流变数据显示出K eq从pH 6的75升高到pH 9的10750(图8c)相似”和“在pH 9时,K eq = 1126±108和565(来自光谱学和流变学,然后分别在pH值为10时急剧下降至K eq = 112和120(图8e,f)。” 在第15373页(在图2标题中):“ K eq = 540±65。” 这些更正不会影响本文的任何结论,而只会影响选择参数的确切值。对于这些错误以及给读者带来的不便,我们深表歉意。可从https://pubs.acs.org/doi/10.1021/jacs.0c10406免费获得支持信息。
  • 合成,样品制备,计算和实验方法以及模型描述(PDF)
合成,样品制备,计算和实验方法以及模型描述(PDF)无需订阅ACS Web版本即可获得电子支持信息文件。美国化学学会在任何可版权保护的支持信息中均拥有版权权益。ACS网站上提供的文件只能下载供个人使用。未经美国化学学会许可,不得以其他方式允许用户以机器可读形式或任何其他形式全部或部分复制,重新发布,重新分发或出售ACS网站上的任何支持信息。为了获得复制,重新发布和重新分发此材料的许可,请求者必须通过RightsLink许可系统处理自己的请求。有关如何使用RightsLink权限系统的信息,请访问http://pubs.acs.org/page/copyright/permissions.html。本文尚未被其他出版物引用。图8.通过流变学测量探测的DCvNs交界处的热力学与温度的关系。平稳模量在(a)PEG–PBA / GL和(d)PEG–PBA / ND系统(10 wt%;γ= 1%)中,在不同温度和pH下测量G p。(b,e)流变数据拟合到动力学模型,在每个pH值下产生反应吉布斯自由能Δr G °。随后,平衡常数,ķ当量,使用等式3(C,F)Δ计算ř ģ °和ķ当量,从流变学模型获得,进行比较,以ķ当量,在从基于荧光的相同的pH值来确定竞争性位移测定(25°C)。可从https://pubs.acs.org/doi/10.1021/jacs.0c10406免费获得支持信息。
  • 合成,样品制备,计算和实验方法以及模型描述(PDF)
合成,样品制备,计算和实验方法以及模型描述(PDF)无需订阅ACS Web版本即可获得电子支持信息文件。美国化学学会在任何可版权保护的支持信息中均拥有版权权益。ACS网站上提供的文件只能下载供个人使用。未经美国化学学会许可,不得以其他方式允许用户以机器可读形式或任何其他形式全部或部分复制,重新发布,重新分发或出售ACS网站上的任何支持信息。为了获得复制,重新发布和重新分发此材料的许可,请求者必须通过RightsLink许可系统处理自己的请求。
更新日期:2020-10-29
down
wechat
bug