当前位置: X-MOL 学术Opt. Mater. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural elucidation and optical properties of LiZrO2–LiBaZrO3 nanocomposite doped with Mn2+ ions
Optical Materials Express ( IF 2.8 ) Pub Date : 2020-10-16 , DOI: 10.1364/ome.402111
V. M. Igba , I. Ahemen , A. N. Amah , F. B. Dejene , R. Sha’Ato , A. Reyes-Rojas , J. A. Duarte-Moller , J. R. Parra-Michel

Nanocomposites of LiZrO2 – LiBaZrO3: xMn2+ (x = 0–0.06 molar ratios) were prepared by the co-precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), UV-visible spectrometry, photoluminescence (PL), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX) techniques. Analysis of XRD data shows two phases: the cubic phase of BaZrO3 perovskite and the tetragonal phase of ZrO2. Mn2+ ions were predominantly distributed in the tetrahedral sites and a few ions are situated at the octahedral sites of the composites. UV-visible spectroscopy of these samples presents two optical band energies, decreasing exponentially with increasing concentration of the Mn2+ ion. PL spectra of Mn2+-doped samples display three broad emission bands: a band centered at wavelength,λ =416 nm (blue), another with peak maximum atλ =527 nm (green) and the third (with relatively the lowest intensity) at about 600 nm (orange-red). The blue (λ =416 nm) band was dominant at low Mn2+ concentrations (x≤0.03) but the green band (λ =527 nm) became dominant at higher Mn2+ concentrations (x>0.03). The CIE coordinates revealed colour changes from blue to green at a concentration of 0.05 mole ratio and white light at 0.06 mole ratio. The phosphor presented in this work is a promising material for use in display devices such as flat panel displays, colour plasma displays, signage lights and backlights.

中文翻译:

掺杂Mn2+离子的LiZrO2-LiBaZrO3纳米复合材料的结构解析和光学性质

LiZrO2 – LiBaZrO3: xMn2+(x = 0-0.06 摩尔比)的纳米复合材料通过共沉淀法制备。制备的样品通过 X 射线衍射 (XRD)、紫外-可见光谱、光致发光 (PL)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDX) 技术进行表征。XRD 数据分析显示两个相:BaZrO3 钙钛矿的立方相和 ZrO2 的四方相。Mn2+ 离子主要分布在四面体位置,少数离子位于复合材料的八面体位置。这些样品的紫外-可见光谱呈现出两个光带能量,随着 Mn2+ 离子浓度的增加呈指数下降。Mn2+ 掺杂样品的 PL 光谱显示三个宽发射带:以波长为中心的带,λ = 416 nm(蓝色),另一个峰值在λ = 527 nm(绿色),第三个(强度相对最低)在约600 nm(橙红色)。蓝色 (λ = 416 nm) 带在低 Mn2+ 浓度 (x≤0.03) 下占主导地位,但绿色带 (λ =527 nm) 在高 Mn2+ 浓度 (x>0.03) 下占主导地位。CIE 坐标显示颜色从蓝色变为绿色,浓度为 0.05 摩尔比,白光浓度为 0.06 摩尔比。这项工作中提出的荧光粉是一种很有前途的材料,可用于显示设备,如平板显示器、彩色等离子显示器、标牌灯和背光。03) 但绿带 (λ = 527 nm) 在较高 Mn2+ 浓度 (x>0.03) 时占主导地位。CIE 坐标显示颜色从蓝色变为绿色,浓度为 0.05 摩尔比,白光为 0.06 摩尔比。这项工作中提出的荧光粉是一种很有前途的材料,可用于显示设备,如平板显示器、彩色等离子显示器、标牌灯和背光。03) 但绿带 (λ = 527 nm) 在较高 Mn2+ 浓度 (x>0.03) 时占主导地位。CIE 坐标显示颜色从蓝色变为绿色,浓度为 0.05 摩尔比,白光浓度为 0.06 摩尔比。这项工作中提出的荧光粉是一种很有前途的材料,可用于显示设备,如平板显示器、彩色等离子显示器、标牌灯和背光。
更新日期:2020-10-16
down
wechat
bug