当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Neural Networks for Detecting Multimode Wigner Negativity
Physical Review Letters ( IF 8.385 ) Pub Date : 2020-10-16 , DOI: 10.1103/physrevlett.125.160504
Valeria Cimini; Marco Barbieri; Nicolas Treps; Mattia Walschaers; Valentina Parigi

The characterization of quantum features in large Hilbert spaces is a crucial requirement for testing quantum protocols. In the continuous variable encoding, quantum homodyne tomography requires an amount of measurement that increases exponentially with the number of involved modes, which practically makes the protocol intractable even with few modes. Here, we introduce a new technique, based on a machine learning protocol with artificial neural networks, that allows us to directly detect negativity of the Wigner function for multimode quantum states. We test the procedure on a whole class of numerically simulated multimode quantum states for which the Wigner function is known analytically. We demonstrate that the method is fast, accurate, and more robust than conventional methods when limited amounts of data are available. Moreover, the method is applied to an experimental multimode quantum state, for which an additional test of resilience to losses is carried out.
更新日期:2020-10-17

 

全部期刊列表>>
spring&清华大学出版社
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
胡眆昊
杨财广
廖矿标
试剂库存
down
wechat
bug