当前位置: X-MOL 学术Compos. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation
Composites Communications ( IF 6.5 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.coco.2020.100532
Francisco Maciel Monticeli , David Daou , Ognjen Peković , Aleksandar Simonović , Herman Jacobus Cornelis Voorwald , Maria Odila Hilário Cioffi

Abstract The aim of this study was to carry out simulations and perform experimental quasi-static delamination tests in modes I and II to characterize the mechanical behavior at a hybrid interface. For that purpose, contact angle, infrared spectroscopy, and energy balance model results were obtained to characterize the physical interfacial energy behavior. The simulations and experimental tests presented similar values and trends, indicating that this is a viable method for predicting the critical fracture toughness of hybrid laminated composites. The low interfacial energy of the stitching (PS) and the epoxy matrix showed a decrease in the experimental strain energy release. The hybrid interface (carbon/glass/epoxy) showed an improvement in fracture toughness, which was physically elucidated through the synergy of high CF/epoxy interfacial energy strain combined with the toughness interaction via organosilane in GF/epoxy interface. In addition, the directional change in the micro-cracks generated between the two interfaces (rough fracture) requires an increase in energy to propagate the delamination as a result of the synergy between the CF and GF stiffness, also confirmed by the physical-based model.

中文翻译:

碳/玻璃/环氧树脂混合界面处模式 I 和 II 分层的 FEA 模拟和实验验证:基于物理的解释

摘要 本研究的目的是在模式 I 和 II 下进行模拟和实验性准静态分层测试,以表征混合界面的力学行为。为此,获得了接触角、红外光谱和能量平衡模型结果来表征物理界面能量行为。模拟和实验测试呈现出相似的值和趋势,表明这是一种预测混合层压复合材料临界断裂韧性的可行方法。缝合(PS)和环氧树脂基体的低界面能显示实验应变能释放的降低。混合界面(碳/玻璃/环氧树脂)显示出断裂韧性的改善,这通过高 CF/环氧树脂界面能应变的协同作用与通过有机硅烷在 GF/环氧树脂界面中的韧性相互作用相结合来物理阐明。此外,由于 CF 和 GF 刚度之间的协同作用,两个界面之间产生的微裂纹(粗糙断裂)的方向变化需要增加能量来传播分层,这也得到了基于物理的模型的证实.
更新日期:2020-12-01
down
wechat
bug