当前位置: X-MOL 学术Ultramicroscopy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-high contrast STEM imaging for segmented/pixelated detectors by maximizing the signal-to-noise ratio
Ultramicroscopy ( IF 2.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ultramic.2020.113133
Kousuke Ooe , Takehito Seki , Yuichi Ikuhara , Naoya Shibata

Atomic-resolution low-dose imaging for beam-sensitive materials is one of the most challenging topics in electron microscopy research. In this study, we theoretically developed a new scanning transmission electron microscopy (STEM) imaging technique by maximizing the signal-to-noise ratio of an obtainable image under the weak phase object approximation (WPOA), which we will call optimum bright-field (OBF) imaging. OBF images are obtained by processing multiple images acquired by segmented/pixelated detectors through complex frequency filtering. This method has been confirmed through a systematic image simulation to be highly dose-efficient. Furthermore, we experimentally demonstrate the high dose efficiency of the OBF technique by visualizing the atomic structure in a lithium-ion battery material using a high-speed segmented detector. Furthermore, it was shown that OBF imaging is usable for real-time imaging, which makes low-dose observations of beam-sensitive materials much easier to achieve.

中文翻译:

通过最大化信噪比,为分段/像素化探测器提供超高对比度 STEM 成像

光束敏感材料的原子分辨率低剂量成像是电子显微镜研究中最具挑战性的课题之一。在这项研究中,我们在理论上开发了一种新的扫描透射电子显微镜 (STEM) 成像技术,通过在弱相位物体近似 (WPOA) 下最大化可获得图像的信噪比,我们将其称为最佳明场。 OBF) 成像。OBF 图像是通过复杂频率滤波处理分段/像素化检测器获取的多个图像而获得的。该方法已通过系统图像模拟证实具有高剂量效率。此外,我们通过使用高速分段探测器可视化锂离子电池材料中的原子结构,通过实验证明了 OBF 技术的高剂量效率。此外,
更新日期:2021-01-01
down
wechat
bug