当前位置: X-MOL 学术Proc. Combust. Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-resolved size, velocity, and temperature statistics of aluminum combustion in solid rocket propellants
Proceedings of the Combustion Institute ( IF 5.3 ) Pub Date : 2020-10-16 , DOI: 10.1016/j.proci.2020.08.010
Andrew W. Marsh , Gwendolyn T. Wang , Jeffery D. Heyborne , Daniel R. Guildenbecher , Yi Chen Mazumdar

The study of time-resolved aluminum combustion mechanisms is essential for understanding the deflagration of ammonium perchlorate-based metalized solid rocket propellants. In order to gain further insight into the performance of solid propellants, spatially and temporally resolved aluminum agglomerate particle dynamics are obtained by combining digital in-line holography (DIH) and two-color imaging pyrometry with high-speed acquisition at up to 20 kHz. Holography is used to find the size, three-dimensional position, and three-dimensional velocity evolution of agglomerates over time. Then, the temperature of individual particles is extracted from the high-speed imaging pyrometry. This diagnostic technique not only produces joint size, position, velocity, and temperature statistics over time, but also captures the combustion histories for thousands of particles per experiment. For the first time, these spatial and temporal dynamics of individual aluminum particulates are examined while they travel away from the propellant surface. Initial results demonstrate how aluminum agglomerates of similar size exhibit varying initial acceleration but similar steady-state velocities. Average velocity also decreases as particle size increases, which is consistent with viscous flow dynamics of small particles in convective flow. As they move further away from the propellant surface, large agglomerates also show a convergence to an average projected temperature between the melting point of aluminum oxide and the boiling point of aluminum. The average projected particle surface temperatures were measured to be 2494 ± 231 K. The method outlined in this work demonstrates a new capability for gathering the evolution of joint statistics for aluminum agglomerates in solid-rocket propellants. Future applications of this technique can be used to evaluate the detailed combustion mechanisms of existing or new propellant formulations.



中文翻译:

固体火箭推进剂中铝燃烧的时间分辨尺寸,速度和温度统计

时间分辨铝燃烧机理的研究对于理解高氯酸铵基金属化固体火箭推进剂的爆燃至关重要。为了进一步了解固体推进剂的性能,通过结合数字在线全息(DIH)和双色成像高温测定法以及高达20 kHz的高速采集,获得了在空间和时间上解析的铝团聚体动力学。全息术用于发现附聚物随时间的尺寸,三维位置和三维速度演变。然后,从高速成像高温测定法提取单个颗粒的温度。这种诊断技术不仅可以生成随时间变化的关节尺寸,位置,速度和温度统计信息,而且还能记录每个实验中数千个粒子的燃烧历史。第一次,当单个铝微粒离开推进剂表面移动时,对这些时空动力学进行了检查。初步结果表明,大小相似的铝块如何表现出不同的初始加速度,但稳态速度却相似。平均速度也随着粒径的增加而降低,这与对流中小颗粒的粘性流动动力学相一致。当它们远离推进剂表面移动时,大的团聚体也显示出在氧化铝的熔点和铝的沸点之间收敛至平均投影温度。测得的平均投影粒子表面温度为2494±231 K. 这项工作中概述的方法展示了一种新功能,可用于收集固体火箭推进剂中铝附聚物的联合统计数据。该技术的未来应用可用于评估现有或新型推进剂配方的详细燃烧机理。

更新日期:2020-10-17
down
wechat
bug