当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-10-16 , DOI: 10.1016/j.cam.2020.113230
Qi Tao; Yan Xu; Chi-Wang Shu

In this paper, an ultra-weak local discontinuous Galerkin (UWLDG) method for a class of nonlinear fourth-order wave equations is designed and analyzed. The UWLDG method is a new DG method designed for solving partial differential equations (PDEs) with high order spatial derivatives. We prove the energy conserving property of our scheme and its optimal error estimates in the L2-norm for the solution itself as well as for the auxiliary variables approximating the derivatives of the solution. Compatible high order energy conserving time integrators are also proposed. The theoretical results are confirmed by numerical experiments.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
浙江大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
李霄鹏
廖矿标
试剂库存
down
wechat
bug