当前位置: X-MOL 学术J. Big Data › 论文详情
A predictive noise correction methodology for manufacturing process datasets
Journal of Big Data Pub Date : 2020-10-17 , DOI: 10.1186/s40537-020-00367-w
Omogbai Oleghe

In manufacturing processes, datasets intended for data driven decisions are majorly generated from time-sequenced sensor readings. Industrial sensor systems are prone to transmit inaccurate readings, which result in noisy datasets. Noisy datasets inhibit machine learning and knowledge discovery. Using a multi-stage, multi-output process dataset as an experimental case, this article reports a methodology for replacing erroneous sensor values with their predicted likely values. In the methodology, invalid values specified by process owners are first converted to missing values. Then, ReliefF algorithm is used to select the most relevant features to progress for prediction modelling, and also to boost the performance of the prediction model. A Random Forest classifier model is built to predict replacement values for the missing values. Finally, predicted values are inserted into the dataset to fill in the missing entries. With many attributes having a significant number of erroneous values, the invalid values replacement is done one attribute at a time. To do this systematically, the process flow direction and stages in the manufacturing process are exploited to partition the dataset into subsets for model building. The results indicate that the methodology is able to replace erroneous values with likely true values, to a very high degree of accuracy. There is a paucity of this type of methodology for dealing with invalid entries in process datasets. The methodology is useful for both missing and invalid value correction in process datasets. In the future, the plan is to inject the prediction models into streaming data to simultaneously enable erroneous value correction and predictive process monitoring in real-time.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug