当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bio-Inspired Quorum Sensing-based Nanonetwork Synchronization using Birth-Death Growth Model
IEEE Transactions on Communications ( IF 7.2 ) Pub Date : 2020-10-01 , DOI: 10.1109/tcomm.2020.3010992
Ponsuge Surani Shalika Tissera , Sangho Choe

We construct a bio-inspired nanomachine network via the quorum sensing (QS) mechanism and analyze that nanonetwork from the perspective of global synchronization time and channel capacity. We propose a realistic (stochastic) approach using birth-death-process-based bacterial growth model and compare it to a conventional ideal (deterministic) approach using exponentially-increased bacterial growth model. For the comparative study, we first define a diffusion-based molecular communication channel between bacterial density and autoinducer (AI) concentration as an approximated Gaussian process, and then analyze the presented QS behavior model numerically as well as theoretically. Increases in the bacterial density augment the diffused AI concentration. When the AI concentration satisfies a specified threshold indicating gene expression, almost all bacteria in that colony represent a collective QS behavior such as biofilm formation. Compared to the ideal approach that is simple but not feasible in real life given the limited resources (e.g., food), the realistic approach is complex but better at representing real and probabilistic QS nature, less sensitive at gene expression, and so more suitable for global synchronization analysis. Via simulation, we evaluate the proposed model in terms of AI concentration versus bacterial density, synchronization time, and information sensing capacity, and demonstrate its superiority over the traditional model.

中文翻译:

使用生死生长模型的基于生物启发的群体感应的纳米网络同步

我们通过群体感应(QS)机制构建了一个仿生纳米机器网络,并从全局同步时间和通道容量的角度分析该纳米网络。我们提出了一种使用基于生死过程的细菌生长模型的现实(随机)方法,并将其与使用指数增加的细菌生长模型的传统理想(确定性)方法进行比较。对于比较研究,我们首先将细菌密度和自诱导剂 (AI) 浓度之间基于扩散的分子通信通道定义为近似高斯过程,然后从数值和理论上分析所提出的 QS 行为模型。细菌密度的增加会增加扩散的 AI 浓度。当 AI 浓度满足指示基因表达的指定阈值时,该菌落中的几乎所有细菌都代表了集体 QS 行为,例如生物膜形成。与在现实生活中考虑到有限资源(例如食物)的简单但不可行的理想方法相比,现实方法复杂但更能代表真实和概率的 QS 性质,对基因表达不太敏感,因此更适合于全局同步分析。通过模拟,我们在 AI 浓度与细菌密度、同步时间和信息感知能力方面评估了所提出的模型,并证明了其优于传统模型。现实方法很复杂,但更能代表真实和概率的 QS 性质,对基因表达不太敏感,因此更适合全局同步分析。通过模拟,我们在 AI 浓度与细菌密度、同步时间和信息感知能力方面评估了所提出的模型,并证明了其优于传统模型。现实方法很复杂,但更能代表真实和概率的 QS 性质,对基因表达不太敏感,因此更适合全局同步分析。通过模拟,我们在 AI 浓度与细菌密度、同步时间和信息感知能力方面评估了所提出的模型,并证明了其优于传统模型。
更新日期:2020-10-01
down
wechat
bug