当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in ultrafast laser structuring of materials at the nanoscale
Nanophotonics ( IF 6.5 ) Pub Date : 2020-10-15 , DOI: 10.1515/nanoph-2020-0310
Razvan Stoian 1 , Jean-Philippe Colombier 1
Affiliation  

Abstract Laser processing implies the generation of a material function defined by the shape and the size of the induced structures, being a collective effect of topography, morphology, and structural arrangement. A fundamental dimensional limit in laser processing is set by optical diffraction. Many material functions are yet defined at the micron scale, and laser microprocessing has become a mainstream development trend. Consequently, laser microscale applications have evolved significantly and developed into an industrial grade technology. New opportunities will nevertheless emerge from accessing the nanoscale. Advances in ultrafast laser processing technologies can enable unprecedented resolutions and processed feature sizes, with the prospect to bypass optical and thermal limits. We will review here the mechanisms of laser processing on extreme scales and the optical and material concepts allowing us to confine the energy beyond the optical limits. We will discuss direct focusing approaches, where the use of nonlinear and near-field effects has demonstrated strong capabilities for light confinement. We will argue that the control of material hydrodynamic response is the key to achieve ultimate resolution in laser processing. A specific structuring process couples both optical and material effects, the process of self-organization. We will discuss the newest results in surface and volume self-organization, indicating the dynamic interplay between light and matter evolution. Micron-sized and nanosized features can be combined into novel architectures and arrangements. We equally underline a new dimensional domain in processing accessible now using laser radiation, the sub-100-nm feature size. Potential application fields will be indicated as the structuring sizes approach the effective mean free path of transport phenomena.

中文翻译:

纳米级材料超快激光结构化研究进展

摘要 激光加工意味着产生由诱导结构的形状和尺寸定义的材料函数,是形貌、形态和结构排列的集体效应。激光加工的基本尺寸限制是由光学衍射决定的。许多材料功能尚未定义在微米尺度,激光微加工已成为主流发展趋势。因此,激光微尺度应用已经显着发展并发展成为一种工业级技术。然而,进入纳米尺度会出现新的机会。超快激光加工技术的进步可以实现前所未有的分辨率和加工特征尺寸,有望绕过光学和热限制。我们将在这里回顾极端尺度的激光加工机制以及允许我们将能量限制在光学极限之外的光学和材料概念。我们将讨论直接聚焦方法,其中非线性和近场效应的使用已证明具有强大的光限制能力。我们将论证材料流体动力学响应的控制是在激光加工中实现最终分辨率的关键。特定的结构化过程结合了光学和材料效应,即自组织过程。我们将讨论表面和体积自组织的最新结果,表明光和物质演化之间的动态相互作用。微米尺寸和纳米尺寸的特征可以组合成新颖的结构和排列。我们同样强调了现在可以使用激光辐射进行加工的新维度域,即亚 100 纳米的特征尺寸。当结构尺寸接近传输现象的有效平均自由程时,将指出潜在的应用领域。
更新日期:2020-10-15
down
wechat
bug