当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers
Nanophotonics ( IF 7.5 ) Pub Date : 2020-10-15 , DOI: 10.1515/nanoph-2020-0437
Elham Heidari 1 , Hamed Dalir 2 , Moustafa Ahmed 3 , Volker J. Sorger 4 , Ray T. Chen 1
Affiliation  

Abstract Vertical-cavity surface-emitting lasers (VCSELs) have emerged as a vital approach for realizing energy-efficient and high-speed optical interconnects in the data centers and supercomputers. Indeed, VCSELs are the most suitable mass production lasers in terms of cost-effectiveness and reliability. However, there are still key challenges that prevent achieving modulation speeds beyond 30s GHz. Here, we propose a novel VCSEL design of a hexagonal transverse-coupled-cavity adiabatically coupled through a central cavity. Following this scheme, we show a prototype demonstrating a 3-dB roll-off modulation bandwidth of 45 GHz, which is five times greater than a conventional VCSEL fabricated on the same epiwafer structure. This design harnesses the Vernier effect to increase the laser’s aperture and therefore is capable of maintaining single-mode operation of the laser for high injection currents, hence extending the dynamic roll-off point and offering increases power output. Simultaneously, extending both the laser modulation speed and output power for this heavily deployed class of lasers opens up new opportunities and fields of use ranging from data-comm to sensing, automotive, and photonic artificial intelligence systems.

中文翻译:

六边形横向耦合腔 VCSEL 重新定义高速激光器

摘要 垂直腔面发射激光器 (VCSEL) 已成为在数据中心和超级计算机中实现高能效和高速光互连的重要途径。事实上,就成本效益和可靠性而言,VCSEL 是最适合批量生产的激光器。然而,仍然存在阻止实现超过 30s GHz 的调制速度的关键挑战。在这里,我们提出了一种通过中心腔绝热耦合的六边形横向耦合腔的新型 VCSEL 设计。按照这个方案,我们展示了一个原型,演示了 45 GHz 的 3-dB 滚降调制带宽,这是在相同外延片结构上制造的传统 VCSEL 的五倍。这种设计利用游标效应来增加激光器的孔径,因此能够在高注入电流的情况下保持激光器的单模操作,从而扩展动态滚降点并提供增加的功率输出。同时,为这种大量部署的激光器扩展激光调制速度和输出功率,开辟了新的机会和使用领域,从数据通信到传感、汽车和光子人工智能系统。
更新日期:2020-10-15
down
wechat
bug