当前位置: X-MOL 学术Glob. Biogeochem. Cycles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attributing Causes of Future Climate Change in the California Current System With Multimodel Downscaling
Global Biogeochemical Cycles ( IF 5.2 ) Pub Date : 2020-10-15 , DOI: 10.1029/2020gb006646
Evan M. Howard 1 , Hartmut Frenzel 1 , Fayçal Kessouri 2 , Lionel Renault 3, 4 , Daniele Bianchi 3 , James C. McWilliams 3 , Curtis Deutsch 1
Affiliation  

Coastal winds in the California Current System (CCS) are credited with the high productivity of its planktonic ecosystem and the shallow hypoxic and corrosive waters that structure diverse macrofaunal habitats. These winds thus are considered a leading mediator of climate change impacts in the CCS and other Eastern Boundary Upwelling systems. We use an eddy‐permitting regional model to downscale the response of the CCS to three of the major distinct climate changes commonly projected by global Earth System Models: regional winds, ocean warming and stratification, and remote water chemical properties. An increase in alongshore winds intensifies spring upwelling across the CCS, but this response is muted by increased stratification, especially during summer. Despite the seasonal shift in regional wind‐driven upwelling, basin‐scale changes are the decisive factor in the response of marine ecosystem properties including temperature, nutrients, productivity, and oxygen. Downscaled temperature increases and dissolved oxygen decreases are broadly consistent with coarse resolution Earth System Models, and these projected changes are large and well constrained across the models, whereas nutrient and productivity changes are small compared to the intermodel spread. These results imply that global models with poor resolution of coastal processes nevertheless yield important information about the dominant climate impacts on coastal ecosystems.

中文翻译:

多模型降尺度在加利福尼亚当前系统中未来气候变化的成因

加利福尼亚洋流系统(CCS)中的沿海风因其浮游生态系统的高生产率以及构成各种大型动物栖息地的浅水低氧和腐蚀性水而闻名。因此,这些风被认为是CCS和其他东部边界上升流系统中气候变化影响的主要调解者。我们使用允许涡流的区域模型来降低CCS对全球地球系统模型通常预测的三种主要的明显气候变化的响应:区域风,海洋变暖和分层以及偏远的水化学性质。沿海风的增加加剧了整个CCS的春季上升流,但是这种反应由于分层增加而减弱,尤其是在夏季。尽管区域性风力上升流有季节性变化,流域规模的变化是影响海洋生态系统特性(包括温度,养分,生产力和氧气)的决定性因素。缩小的温度升高和溶解氧的降低与粗分辨率地球系统模型大致一致,并且这些预测的变化很大,并且在整个模型中受到很好的约束,而与模型间的传播相比,养分和生产力的变化很小。这些结果表明,对沿海过程的分辨率较差的全球模型仍然会得出有关气候对沿海生态系统的主要影响的重要信息。缩小的温度升高和溶解氧的降低与粗分辨率地球系统模型大致一致,并且这些预测的变化很大,并且在整个模型中受到很好的约束,而与模型间的传播相比,养分和生产力的变化很小。这些结果表明,对沿海过程的分辨率较差的全球模型仍然会得出有关气候对沿海生态系统的主要影响的重要信息。缩小的温度升高和溶解氧的降低与粗分辨率地球系统模型大致一致,并且这些预测的变化很大,并且在整个模型中受到很好的约束,而与模型间的传播相比,养分和生产力的变化很小。这些结果表明,对沿海过程的分辨率较差的全球模型仍然会得出有关气候对沿海生态系统的主要影响的重要信息。
更新日期:2020-11-06
down
wechat
bug