当前位置: X-MOL 学术Astrobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating Habitability with an Integrated Rock-Climbing Robot and Astrobiology Instrument Suite
Astrobiology ( IF 3.5 ) Pub Date : 2020-12-14 , DOI: 10.1089/ast.2019.2177
Kyle Uckert 1 , Aaron Parness 1 , Nancy Chanover 2 , Evan J Eshelman 1 , Neil Abcouwer 1 , Jeremy Nash 1 , Renaud Detry 1 , Christine Fuller 1 , David Voelz 2 , Robert Hull 2 , David Flannery 3 , Rohit Bhartia 4 , Kenneth S Manatt 1 , William J Abbey 1 , Penelope Boston 5
Affiliation  

A prototype rover carrying an astrobiology payload was developed and deployed at analog field sites to mature generalized system architectures capable of searching for biosignatures in extreme terrain across the Solar System. Specifically, the four-legged Limbed Excursion Mechanical Utility Robot (LEMUR) 3 climbing robot with microspine grippers carried three instruments: a micro-X-ray fluorescence instrument based on the Mars 2020 mission's Planetary Instrument for X-ray Lithochemistry provided elemental chemistry; a deep-ultraviolet fluorescence instrument based on Mars 2020's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals mapped organics in bacterial communities on opaque substrates; and a near-infrared acousto-optic tunable filter-based point spectrometer identified minerals and organics in the 1.6–3.6 μm range. The rover also carried a light detection and ranging and a color camera for both science and navigation. Combined, this payload detects astrobiologically important classes of rock components (elements, minerals, and organics) in extreme terrain, which, as demonstrated in this work, can reveal a correlation between textural biosignatures and the organics or elements expected to preserve them in a habitable environment. Across >10 field tests, milestones were achieved in instrument operations, autonomous mobility in extreme terrain, and system integration that can inform future planetary science mission architectures. Contributions include (1) system-level demonstration of mock missions to the vertical exposures of Mars lava tube caves and Mars canyon walls, (2) demonstration of multi-instrument integration into a confocal arrangement with surface scanning capabilities, and (3) demonstration of automated focus stacking algorithms for improved signal-to-noise ratios and reduced operation time.

中文翻译:

使用集成式攀岩机器人和天体生物学仪器套件研究宜居性

携带天体生物学有效载荷的原型漫游车被开发并部署在模拟现场站点,以成熟的通用系统架构能够在整个太阳系的极端地形中搜索生物特征。具体来说,四足四肢远足机械实用机器人(LEMUR)3攀爬机器人带有微脊椎夹具,​​携带三种仪器:基于火星2020任务的X射线岩石化学行星仪器提供元素化学的微型X射线荧光仪器;基于 Mars 2020 的扫描可居住环境与有机物和化学品的拉曼和发光的深紫外荧光仪器在不透明基质上绘制细菌群落中的有机物;近红外声光可调谐滤光片点光谱仪鉴定了 1 中的矿物质和有机物。6–3.6 μm 范围。漫游车还携带了光探测和测距以及用于科学和导航的彩色相机。结合起来,该有效载荷可检测极端地形中具有天体生物学意义的岩石成分(元素、矿物质和有机物)类别,正如本工作所证明的那样,这可以揭示纹理生物特征与预期将它们保存在宜居环境中的有机物或元素之间的相关性。环境。在超过 10 次现场测试中,在仪器操作、极端地形中的自主移动以及可以为未来行星科学任务架构提供信息的系统集成方面取得了里程碑式的成果。贡献包括(1)对火星熔岩管洞穴和火星峡谷壁垂直暴露的模拟任务的系统级演示,
更新日期:2020-12-16
down
wechat
bug