当前位置: X-MOL 学术Enzyme Microb. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme
Enzyme and Microbial Technology ( IF 3.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.enzmictec.2020.109692
Andrea N Fabara 1 , Marco W Fraaije 1
Affiliation  

The current chemical process for industrial indigo production puts a heavy burden on the environment. An attractive option would be to develop an alternative biotechnological process which does not rely on a petrochemical. This study describes a new biotransformation approach in which l-tryptophan is used as starting material. Its conversion to indigo can be achieved through recombinant overexpression of a bifunctional fusion enzyme, flavin-containing monooxygenase (FMO) fused to tryptophanase (TRP). First, TRP converts l-tryptophan into pyruvate, ammonia and indole. The formed indole serves as substrate for FMO, resulting in indigo formation, while pyruvate fuels the cells for regenerating the required NADPH. To optimize this bioconversion, different fusion constructs were tested. Fusing TRP to FMO at either the N-terminus (TRP-FMO) or the C-terminus (FMO-TRP) resulted in similar high expression levels of bifunctional fusion enzymes. Using whole cells and l-tryptophan as a precursor, high production levels of indigo could be obtained, significantly higher when compared with cells containing only overexpressed FMO. The TRP-FMO containing cells gave the highest yield of indigo resulting in full conversion of 2.0 g l-tryptophan into 1.7 g indigo per liter of culture. The process developed in this study provides an alternative biotransformation approach for the production of indigo starting from biobased starting material.

中文翻译:

通过使用双功能底物和双功能融合酶生产靛蓝

目前工业靛蓝生产的化学过程给环境带来了沉重的负担。一个有吸引力的选择是开发一种不依赖石化产品的替代生物技术工艺。本研究描述了一种新的生物转化方法,其中使用 l-色氨酸作为起始材料。其转化为靛蓝可以通过双功能融合酶、与色氨酸酶 (TRP) 融合的含黄素单加氧酶 (FMO) 的重组过表达来实现。首先,TRP 将 l-色氨酸转化为丙酮酸、氨和吲哚。形成的吲哚作为 FMO 的底物,导致靛蓝的形成,而丙酮酸则为细胞提供燃料以再生所需的 NADPH。为了优化这种生物转化,测试了不同的融合构建体。在 N 端 (TRP-FMO) 或 C 端 (FMO-TRP) 将 TRP 融合到 FMO 导致双功能融合酶的类似高表达水平。使用全细胞和 l-色氨酸作为前体,可以获得高产量的靛蓝,与仅含有过表达 FMO 的细胞相比,产量明显更高。含有 TRP-FMO 的细胞产生最高的靛蓝产量,导致每升培养物 2.0 g l-色氨酸完全转化为 1.7 g 靛蓝。本研究中开发的工艺为从生物基原材料开始生产靛蓝提供了一种替代的生物转化方法。与仅含有过表达 FMO 的细胞相比,显着更高。含有 TRP-FMO 的细胞产生最高的靛蓝产量,导致每升培养物 2.0 g l-色氨酸完全转化为 1.7 g 靛蓝。本研究中开发的工艺为从生物基原材料开始生产靛蓝提供了一种替代的生物转化方法。与仅含有过表达 FMO 的细胞相比,显着更高。含有 TRP-FMO 的细胞产生最高的靛蓝产量,导致每升培养物 2.0 g l-色氨酸完全转化为 1.7 g 靛蓝。本研究中开发的工艺为从生物基原材料开始生产靛蓝提供了一种替代的生物转化方法。
更新日期:2020-12-01
down
wechat
bug