当前位置: X-MOL 学术PLOS Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput mapping of the phage resistance landscape in E. coli
PLOS Biology ( IF 7.8 ) Pub Date : 2020-10-13 , DOI: 10.1371/journal.pbio.3000877
Vivek K Mutalik 1, 2 , Benjamin A Adler 2, 3 , Harneet S Rishi 4, 5 , Denish Piya 2, 3 , Crystal Zhong 1 , Britt Koskella 6 , Elizabeth M Kutter 7 , Richard Calendar 8 , Pavel S Novichkov 1 , Morgan N Price 1 , Adam M Deutschbauer 1, 2, 9 , Adam P Arkin 1, 2, 3, 4, 5
Affiliation  

Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.



中文翻译:


大肠杆菌噬菌体抗性图谱的高通量绘图



噬菌体(噬菌体)是微生物群落动态和功能的关键参与者,并驱动全球生物地球化学循环和人类健康等多种过程。噬菌体往往是捕食者,经过精心调整,可以攻击特定的宿主,甚至达到应变水平,而宿主又使用一系列机制来保护自己。然而,迄今为止,快速、全面鉴定噬菌体感染和耐药性中重要的细菌宿主因素的努力尚未完全实现。在这里,我们使用具有已知序列差异的两种模型大肠杆菌菌株(K-12 和 BL21),对参与 14 种系统发育多样性双链 DNA 噬菌体抗性的宿主遗传决定因素进行了全局图谱分析,以证明菌株特异性差异。利用全基因组功能丧失和功能获得遗传技术,我们能够确认先前描述的噬菌体受体,并发现许多先前未知的宿主因子,这些因子赋予对一种或多种噬菌体的抗性。我们发现耐药因子的差异与 K-12 和 BL21 对特定噬菌体的敏感性密切相关。我们还确定了噬菌体特异性机制,例如环二 GMP 在宿主对噬菌体 N4 敏感性中的意外作用,以及更通用的防御,例如可防御多种噬菌体的豆蔻酸荚膜多糖的过量产生。我们的结果表明,宿主对噬菌体的反应可以通过多种细胞机制发生。我们用于表征噬菌体-宿主相互作用决定因素的系统性高通量遗传工作流程可以扩展到不同的细菌,以生成数据集,从而允许建立噬菌体介导的选择如何塑造细菌表型和进化的预测模型。 这项研究的结果以及未来绘制噬菌体抗性图谱的努力将为宿主及其噬菌体的共同进化带来新的见解,最终可用于设计更好的噬菌体治疗方法和用于精密微生物组工程的工具。

更新日期:2020-10-13
down
wechat
bug