当前位置: X-MOL 学术J. Biomol. Struct. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular recognition of acetylcholinesterase and its subnanomolar reversible inhibitor: a molecular simulations study
Journal of Biomolecular Structure and Dynamics ( IF 2.7 ) Pub Date : 2020-10-13 , DOI: 10.1080/07391102.2020.1831960
Maja Vitorović-Todorović 1 , Ilija Cvijetić 2 , Mire Zloh 3, 4 , Andrej Perdih 5
Affiliation  

Abstract

Recently, we designed and synthesized a subnanomolar, reversible, dual-binding site acetylcholinesterase (AChE) inhibitor which consists of the tacrine and aroylacrylic acid phenylamide moieties, mutually linked by eight methylene units. To further investigate the process of the molecular recognition between the AChE and its inhibitor, we performed six unconstrained molecular dynamics (MD) simulations, where the compound in three possible protonation states was placed inside binding sites of two available AChE crystal structures. In all six MD trajectories, the ligand generally occupied similar space inside the AChE active site, but the pattern of the interactions between the ligand functional groups and the amino acid residues was significantly different and highly dependent upon the crystal structure used to generate initial systems for simulation. The greatest differences were observed between the trajectories obtained with different AChE crystal structures used as starting target conformations. In some trajectories, several unusual positions and dynamic behavior of the tacrine moiety were observed. Therefore, this study provides important structure-based data useful in further optimization of the reversible, dual binding AChE inhibitors, and also emphasizes the importance of the starting crystal structure used for dynamics as well as the protonation state of the reversible inhibitors.

Communicated by Ramaswamy H. Sarma



中文翻译:

乙酰胆碱酯酶及其亚纳摩尔可逆抑制剂的分子识别:分子模拟研究

摘要

最近,我们设计并合成了一种亚纳摩尔、可逆、双结合位点乙酰胆碱酯酶 (AChE) 抑制剂,该抑制剂由他克林和芳酰基丙烯酸苯酰胺部分组成,由八个亚甲基单元相互连接。为了进一步研究 AChE 与其抑制剂之间的分子识别过程,我们进行了六次无约束的分子动力学 (MD) 模拟,其中三种可能的质子化状态的化合物被放置在两个可用的 AChE 晶体结构的结合位点内。在所有六个 MD 轨迹中,配体通常在 AChE 活性位点内占据相似的空间,但是配体官能团和氨基酸残基之间的相互作用模式明显不同,并且高度依赖于用于生成初始模拟系统的晶体结构。在使用不同的 AChE 晶体结构作为起始目标构象获得的轨迹之间观察到最大的差异。在一些轨迹中,观察到了 tacrine 部分的几个不寻常的位置和动态行为。因此,本研究提供了重要的基于结构的数据,可用于进一步优化可逆的双结合 AChE 抑制剂,并且还强调了用于动力学的起始晶体结构以及可逆抑制剂的质子化状态的重要性。在使用不同的 AChE 晶体结构作为起始目标构象获得的轨迹之间观察到最大的差异。在一些轨迹中,观察到了 tacrine 部分的几个不寻常的位置和动态行为。因此,本研究提供了重要的基于结构的数据,可用于进一步优化可逆的双结合 AChE 抑制剂,并且还强调了用于动力学的起始晶体结构以及可逆抑制剂的质子化状态的重要性。在使用不同的 AChE 晶体结构作为起始目标构象获得的轨迹之间观察到最大的差异。在一些轨迹中,观察到了 tacrine 部分的几个不寻常的位置和动态行为。因此,本研究提供了重要的基于结构的数据,可用于进一步优化可逆的双结合 AChE 抑制剂,并且还强调了用于动力学的起始晶体结构以及可逆抑制剂的质子化状态的重要性。

由 Ramaswamy H. Sarma 传达

更新日期:2020-10-13
down
wechat
bug