当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Synthesis of a Multipurpose Pt−Ni Catalyst for Renewable Energy‐Related Electrocatalytic Reactions
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-10-12 , DOI: 10.1002/celc.202001278
Md Abu Sayeed 1, 2 , Charlotte Woods 1 , Jonathan Love 1, 2 , Anthony P. O'Mullane 1, 2
Affiliation  

Renewable energy driven electrochemical processes are becoming increasingly important in the transition away from fossil fuels. One of the key reactions is electrochemical water splitting to generate green hydrogen which ideally could be directly integrated with a wind or solar electricity source. However, alkaline electrolysers suffer from significant degradation in performance if they are rapidly powered down under reduced sunlight conditions when directly coupled with a solar cell due to reverse current flow. In this work we address this issue by creating a truly bifunctional electrode material that is switchable between the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The synthesis method is simple whereby a Pt electrode is electrochemically activated and then immersed in a nickel nitrate solution to electrolessly deposit Ni on the surface. When this electrode is electrochemically cycled, it creates an active Pt−Ni alloy at the Pt surface. Importantly, this electrocatalyst is switchable between both reactions without loss of activity as evidenced by an accelerated stress test over a 24 h period. An added advantage is that this Pt−Ni electrocatalyst is also more active than Pt for the oxygen reduction reaction which opens up its applicability in fuel cells. Finally, to demonstrate the multifunctionality of this Pt−Ni material, ethanol and ammonia oxidation is demonstrated which also shows better performance than Pt.

中文翻译:

用于可再生能源相关电催化反应的多功能Pt-Ni催化剂的电化学合成

在从化石燃料的过渡中,可再生能源驱动的电化学过程变得越来越重要。关键反应之一是电化学水分解生成绿色氢,理想情况下可将其与风能或太阳能直接整合。但是,如果碱性电解槽由于反向电流而直接与太阳能电池耦合时,如果在减少的日光条件下迅速断电,则其性能会大大下降。在这项工作中,我们通过创建一种真正的双功能电极材料来解决这个问题,该材料可以在氢气析出反应(HER)和氧气析出反应(OER)之间切换。合成方法很简单,其中Pt电极被电化学激活,然后浸入硝酸镍溶液中以在表面化学沉积Ni。当该电极进行电化学循环时,会在Pt表面生成活性Pt-Ni合金。重要的是,这种电催化剂可以在两个反应之间切换,而不会失去活性,这可以通过24小时的加速应力测试来证明。另一个优点是,该Pt-Ni电催化剂在氧还原反应方面也比Pt更具活性,这使其在燃料电池中的适用性得以提高。最后,为了证明这种Pt-Ni材料的多功能性,证明了乙醇和氨氧化也显示出比Pt更好的性能。它会在Pt表面生成活性Pt-Ni合金。重要的是,这种电催化剂可以在两个反应之间切换,而不会失去活性,这可以通过24小时的加速应力测试来证明。另一个优点是,该Pt-Ni电催化剂在氧还原反应方面也比Pt更具活性,这使其在燃料电池中的适用性得以提高。最后,为了证明这种Pt-Ni材料的多功能性,证明了乙醇和氨氧化也显示出比Pt更好的性能。它会在Pt表面生成活性Pt-Ni合金。重要的是,这种电催化剂可以在两个反应之间切换,而不会失去活性,这可以通过24小时的加速应力测试来证明。另一个优点是,该Pt-Ni电催化剂在氧还原反应方面也比Pt更具活性,这使其在燃料电池中的适用性得以提高。最后,为了证明这种Pt-Ni材料的多功能性,证明了乙醇和氨氧化也显示出比Pt更好的性能。另一个优点是,该Pt-Ni电催化剂在氧还原反应方面也比Pt更具活性,这使其在燃料电池中的适用性得以提高。最后,为了证明这种Pt-Ni材料的多功能性,证明了乙醇和氨氧化也显示出比Pt更好的性能。另一个优点是,该Pt-Ni电催化剂在氧还原反应方面也比Pt更具活性,这使其在燃料电池中的适用性得以提高。最后,为了证明这种Pt-Ni材料的多功能性,证明了乙醇和氨氧化也显示出比Pt更好的性能。
更新日期:2020-11-02
down
wechat
bug