当前位置: X-MOL 学术Lith. Math. J. › 论文详情
Random Fourier series with Dependent Random Variables
Lithuanian Mathematical Journal ( IF 0.413 ) Pub Date : 2020-10-13 , DOI: 10.1007/s10986-020-09497-3
Safari Mukeru

Given a sequence of independent standard Gaussian variables (Zn), the classical Pisier algebra P is the class of all continuous functions f on the unit circle T such that for each t ∈ 𝕋, the random Fourier series \( {\sum}_{n\in \mathrm{\mathbb{Z}}}{Z}_n\hat{f}(n)\times \exp \left(2\pi \mathrm{i} nt\right) \) converges in L2 and the corresponding sums constitute a Gaussian process that admits a continuous version. It was constructed by Pisier in 1979 to answer a long-standing question raised by Katznelson. In this paper, we consider the general random Fourier series \( {\sum}_{n\in \mathrm{\mathbb{Z}}}{Z}_n\hat{f}(n)\times \exp \left(2\pi \mathrm{i} nt\right) \) where ξ = (ξn) is a discrete Gaussian process of standard Gaussian random variables but with the restriction of independence relaxed and study the corresponding class P(ξ) of continuous functions f on 𝕋. We obtain sufficient conditions (based on some spectral properties of the covariance matrix of (ξn)) for each of the relations 𝒫 (ξ), 𝒫(ξ) 𝒫, and 𝒫 = 𝒫(ξ). We illustrate these results by the classical fractional Gaussian noise. Whether in general (ξ) is also a Banach algebra is an open problem.

更新日期:2020-10-20

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug