当前位置: X-MOL 学术GPS Solut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance of miniaturized atomic clocks in static laboratory and dynamic flight environments
GPS Solutions ( IF 4.5 ) Pub Date : 2020-10-13 , DOI: 10.1007/s10291-020-01036-4
Ankit Jain , Thomas Krawinkel , Steffen Schön , Andreas Bauch

Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of − 1.2 × 10−9 and + 1.5 × 10−9, respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics.



中文翻译:

微型原子钟在静态实验室和动态飞行环境中的性能

作为全球导航卫星系统(GNSS)接收器中的本地振荡器,具有高频稳定性的小型原子钟有望改善实时运动学应用。多年来,人们一直在研究这种振荡器的总体技术适用性,即可运输性和动态环境下的性能。这些时钟的短期频率稳定性通常由制造商指定,对固定应用有效。由于大多数振荡器的性能在动态条件下可能会下降,因此对各种振荡器进行了测试,以发现动态情况下接收器时钟建模的极限,从而得出足够的随机模型以用于导航。我们介绍了三种不同振荡器的性能(Microsemi MAC SA.35m,适用于静态和动态应用的Spectratime LCR-900和Stanford Research Systems SC10)。对于静态情况,这三个振荡器的频率稳定性在德国国家计量学会Physikalisch-Technische Bundesanstalt进行了表征。由此产生的艾伦偏差与制造商的数据非常吻合。此外,进行了飞行实验以评估振荡器在动态条件下的性能。在这里,每个振荡器都取代了大地测量级GNSS接收器的内部振荡器,并且确定了接收器时钟偏置的稳定性。相对于由导航级惯性测量单元记录的飞行动力学来表征振荡器的时间和频率偏移。实验结果表明,与静态情况相比,每个振荡器的频率稳定性至少降低了一个数量级。同样,两个石英振荡器显示出显着的g灵敏度,从而导致− 1.2×10的频移分别为-9和+ 1.5×10 -9,而the时钟不那么敏感,因此即使在高动态条件下,也可以进行接收机时钟建模并增强导航性能。

更新日期:2020-10-13
down
wechat
bug