当前位置: X-MOL 学术Acta. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact force identification in structures using time-domain spectral finite elements
Acta Mechanica ( IF 2.3 ) Pub Date : 2020-08-12 , DOI: 10.1007/s00707-020-02775-8
Raghavendra B. Kulkarni , S. Gopalakrishnan , Manish Trikha

During the launch and subsequent life of a spacecraft, there are various transient loads due to stage separation and micro-meteorite impact which a spacecraft structure must be designed to withstand. However, the force histories for these transients at these locations are not available to design the structure due to practical considerations like mounting of instrumentation. To address this problem, a new algorithm for performing impact force identification based on time-domain responses measured at various locations is proposed. The time-domain spectral finite element model is adopted as it requires a fewer number of measured responses which clearly has an advantage with respect to conventional finite element method. Hence, we use time-domain spectral finite element method, to generate the mass, stiffness, and damping matrices, which are required to perform force identification. Experiments are performed to obtain the time-domain responses on the beam and portal frame structures on which force identification is performed. The efficiency of the new algorithm is demonstrated using a variety of responses and different one-dimensional structures. However, the proposed algorithm is general in nature and can be used for one-, two-, and three-dimensional structures and with conventional generalized finite element model. The results from the proposed algorithm show an excellent match between the reconstructed force histories and the experimentally measured force. © 2020, Springer-Verlag GmbH Austria, part of Springer Nature.

中文翻译:

使用时域谱有限元识别结构中的冲击力

在航天器的发射和后续寿命期间,由于级分离和微陨石撞击,航天器结构的设计必须能够承受各种瞬态载荷。然而,由于仪表安装等实际考虑,这些位置处的这些瞬变的力历史无法用于设计结构。为了解决这个问题,提出了一种基于在不同位置测量的时域响应来执行冲击力识别的新算法。采用时域谱有限元模型,因为它需要较少数量的测量响应,这明显优于传统的有限元方法。因此,我们使用时域谱有限元方法来生成质量、刚度和阻尼矩阵,这是执行力识别所需的。进行实验以获得进行力识别的梁和门架结构的时域响应。使用各种响应和不同的一维结构证明了新算法的效率。然而,所提出的算法本质上是通用的,可用于一维、二维和三维结构以及常规的广义有限元模型。所提出的算法的结果表明重建的力历史和实验测量的力之间非常匹配。© 2020,Springer-Verlag GmbH Austria,Springer Nature 的一部分。进行实验以获得进行力识别的梁和门架结构的时域响应。使用各种响应和不同的一维结构证明了新算法的效率。然而,所提出的算法本质上是通用的,可用于一维、二维和三维结构以及常规的广义有限元模型。所提出的算法的结果表明重建的力历史和实验测量的力之间非常匹配。© 2020,Springer-Verlag GmbH Austria,Springer Nature 的一部分。进行实验以获得进行力识别的梁和门架结构的时域响应。使用各种响应和不同的一维结构证明了新算法的效率。然而,所提出的算法本质上是通用的,可用于一维、二维和三维结构以及常规的广义有限元模型。所提出的算法的结果表明重建的力历史和实验测量的力之间非常匹配。© 2020,Springer-Verlag GmbH Austria,Springer Nature 的一部分。所提出的算法本质上是通用的,可用于一维、二维和三维结构以及常规的广义有限元模型。所提出的算法的结果表明重建的力历史和实验测量的力之间非常匹配。© 2020,Springer-Verlag GmbH Austria,Springer Nature 的一部分。所提出的算法本质上是通用的,可用于一维、二维和三维结构以及常规的广义有限元模型。所提出的算法的结果表明重建的力历史和实验测量的力之间非常匹配。© 2020,Springer-Verlag GmbH Austria,Springer Nature 的一部分。
更新日期:2020-08-12
down
wechat
bug