当前位置: X-MOL 学术J. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
Journal of Instrumentation ( IF 1.3 ) Pub Date : 2020-10-08 , DOI: 10.1088/1748-0221/15/10/p10005
S. Aiello 1 , A. Albert 2, 3 , S. Alves Garre 4 , Z. Aly 5 , F. Ameli 6 , M. Andre 7 , G. Androulakis 8 , M. Anghinolfi 9 , M. Anguita 10 , G. Anton 11 , M. Ardid 12 , J. Aublin 13 , C. Bagatelas 8 , G. Barbarino 14, 15 , B. Baret 13 , S. Basegmez du Pree 16 , M. Bendahman 17 , E. Berbee 16 , A.M. van den Berg 18 , V. Bertin 5 , S. Biagi 19 , A. Biagioni 6 , M. Bissinger 11 , M. Boettcher 20 , J. Boumaaza 17 , M. Bouta 21 , M. Bouwhuis 16 , C. Bozza 22 , H. Brnzaş 23 , R. Bruijn 16, 24 , J. Brunner 5 , E. Buis 25 , R. Buompane 14, 26 , J. Busto 5 , B. Caiffi 9 , D. Calvo 4 , A. Capone 6, 27 , V. Carretero 4 , P. Castaldi 28 , S. Celli 6, 27, 29 , M. Chabab 30 , N. Chau 13 , A. Chen 31 , S. Cherubini 19, 32 , V. Chiarella 33 , T. Chiarusi 28 , M. Circella 34 , R. Cocimano 19 , J.A.B. Coelho 13 , A. Coleiro 13 , M. Colomer Molla 4, 13 , R. Coniglione 19 , P. Coyle 5 , A. Creusot 13 , G. Cuttone 19 , A. D'Onofrio 14, 26 , R. Dallier 35 , M. De Palma 34, 36 , I. Di Palma 6, 27 , A.F. Daz 10 , D. Diego-Tortosa 12 , C. Distefano 19 , A. Domi 5, 9, 37 , R. Don 28, 38 , C. Donzaud 13 , D. Dornic 5 , M. Drr 39 , D. Drouhin 2, 3 , T. Eberl 11 , A. Eddyamoui 17 , T. van Eeden 16 , D. van Eijk 16 , I. El Bojaddaini 21 , D. Elsaesser 39 , A. Enzenhöfer 5 , V. Espinosa Rosell 12 , P. Fermani 6, 27 , G. Ferrara 19, 32 , M. D. Filipović 40 , F. Filippini 28, 38 , L.A. Fusco 13 , O. Gabella 41 , T. Gal 11 , A. Garcia Soto 16 , F. Garufi 14, 15 , Y. Gatelet 13 , N. Geielbrecht 11 , L. Gialanella 14, 26 , E. Giorgio 19 , S.R Gozzini 4 , R. Gracia 16 , K. Graf 11 , D. Grasso 42 , G. Grella 43 , D. Guderian 44 , C. Guidi 9, 37 , S. Hallmann 11 , H. Hamdaoui 17 , H. van Haren 45 , A. Heijboer 16 , A. Hekalo 39 , J.J. Hernndez-Rey 4 , J. Hofestdt 11 , F. Huang 46 , W. Idrissi Ibnsalih 14, 26 , G. Illuminati 4 , C.W. James 47 , M. de Jong 16 , P. de Jong 16, 24 , B.J. Jung 16 , M. Kadler 39 , P. Kalaczyński 48 , O. Kalekin 11 , U.F. Katz 11 , N.R Khan Chowdhury 4 , G. Kistauri 49 , F. van der Knaap 25 , E.N. Koffeman 16, 24 , P. Kooijman 24, 50 , A. Kouchner 13, 51 , M. Kreter 20 , V. Kulikovskiy 9 , R. Lahmann 11 , G. Larosa 19 , R. Le Breton 13 , O. Leonardi 19 , F. Leone 19, 32 , E. Leonora 1 , G. Levi 28, 38 , M. Lincetto 5 , M. Lindsey Clark 13 , T. Lipreau 35 , A. Lonardo 6 , F. Longhitano 1 , D. Lopez-Coto 52 , L. Maderer 13 , J. Mańczak 4 , K. Mannheim 39 , A. Margiotta 28, 38 , A. Marinelli 14 , C. Markou 8 , L. Martin 35 , J.A. Martnez-Mora 12 , A. Martini 33 , F. Marzaioli 14, 26 , S. Mastroianni 14 , S. Mazzou 30 , K.W. Melis 16 , G. Miele 14, 15 , P. Migliozzi 14 , E. Migneco 19 , P. Mijakowski 48 , L.S. Miranda 53 , C.M. Mollo 14 , M. Morganti 42, 54 , M. Moser 11 , A. Moussa 21 , R. Muller 16 , M. Musumeci 19 , L. Nauta 16 , S. Navas 52 , C.A. Nicolau 6 , B. Fearraigh 16, 24 , M. Organokov 46 , A. Orlando 19 , G. Papalashvili 49 , R. Papaleo 19 , C. Pastore 34 , A. M. Păun 23 , G.E. Păvălacs 23 , C. Pellegrino 38, 55 , M. Perrin-Terrin 5 , P. Piattelli 19 , C. Pieterse 4 , K. Pikounis 8 , O. Pisanti 14, 15 , C. Poir 12 , V. Popa 23 , M. Post 24 , T. Pradier 46 , G. Phlhofer 56 , S. Pulvirenti 19 , O. Rabyang 20 , F. Raffaelli 42 , N. Randazzo 1 , A. Rapicavoli 32 , S. Razzaque 53 , D. Real 4 , S. Reck 11 , G. Riccobene 19 , M. Richer 46 , S. Rivoire 41 , A. Rovelli 19 , F. Salesa Greus 4 , D.F.E. Samtleben 16, 57 , A. Snchez Losa 34 , M. Sanguineti 9, 37 , A. Santangelo 56 , D. Santonocito 19 , P. Sapienza 19 , J. Schnabel 11 , J. Seneca 16 , I. Sgura 34 , R. Shanidze 49 , A. Sharma 58 , F. Simeone 6 , A. Sinopoulou 8 , B. Spisso 14, 43 , M. Spurio 28, 38 , D. Stavropoulos 8 , J. Steijger 16 , S.M. Stellacci 14, 43 , M. Taiuti 9, 37 , Y. Tayalati 17 , E. Tenllado 52 , T. Thakore 4 , S. Tingay 47 , E. Tzamariudaki 8 , D. Tzanetatos 8 , V. Van Elewyck 13, 51 , G. Vannoye 9 , G. Vasileiadis 41 , F. Versari 28, 38 , S. Viola 19 , D. Vivolo 14, 15 , G. de Wasseige 13 , J. Wilms 59 , R. Wojaczyński 48 , E. de Wolf 16, 24 , D. Zaborov 5, 60 , S. Zavatarelli 9 , A. Zegarelli 6, 27 , D. Zito 19 , J.D. Zornoza 4 , J. Ziga 4 , N. Zywucka 20
Affiliation  

The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.

中文翻译:

使用卷积神经网络的 KM3NeT/ORCA 事件重建

KM3NeT 研究基础设施目前正在地中海的两个地点建设。法国海岸附近的 KM3NeT/ORCA 水-切伦科夫中微子探测器将用光电传感器检测数兆吨海水。它的主要目标是确定中微子的质量排序。这项工作旨在展示深度卷积神经网络对中微子望远镜的普遍适用性,以 KM3NeT/ORCA 探测器的模拟数据集为例。为此,网络被用来实现重建和分类任务,这些任务构成了 KM3NeT 意向书中为 KM3NeT/ORCA 提供的分析管道的替代方案。它们用于推断入射中微子的能量、方向和相互作用点的事件重建估计。中微子相互作用中诱发的带电粒子产生的切伦科夫光的空间分布被归类为阵雨状或径迹状,并且识别出与大气中微子探测相关的主要背景过程。提供了与先前为 KM3NeT/ORCA 开发的机器学习分类和最大似然重建算法的性能比较。结果表明,将深度卷积神经网络应用于大体积中微子望远镜的模拟数据集,产生了与经典方法相比具有竞争力的重建结果和性能改进。并识别出与大气中微子探测相关的主要背景过程。提供了与先前为 KM3NeT/ORCA 开发的机器学习分类和最大似然重建算法的性能比较。结果表明,将深度卷积神经网络应用于大体积中微子望远镜的模拟数据集,产生了与经典方法相比具有竞争力的重建结果和性能改进。并识别出与大气中微子探测相关的主要背景过程。提供了与先前为 KM3NeT/ORCA 开发的机器学习分类和最大似然重建算法的性能比较。结果表明,将深度卷积神经网络应用于大体积中微子望远镜的模拟数据集,产生了与经典方法相比具有竞争力的重建结果和性能改进。
更新日期:2020-10-08
down
wechat
bug