当前位置: X-MOL 学术Int. J. Mod. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the surface grain state, residual stress and their influence on the deformation of thin-walled parts under ultra-precision cutting
International Journal of Modern Physics B ( IF 2.6 ) Pub Date : 2020-10-09 , DOI: 10.1142/s0217979220502720
Yi Chen 1 , Shaoxing Ma 1 , Jinxing Kong 1 , Wen Huang 1
Affiliation  

Thin-wall parts have the advantages of light weight and high structural strength and are widely used in industrial fields. As the increasing requirements for the form accuracy and surface quality, ultra-precision cutting has been increasingly used to manufacture thin-walled parts. However, due to the small effect range (less than 10 [Formula: see text]m) of residual stress caused by ultra-precision cutting, it cannot be accurately measured by the conventional methods. Therefore, the research on the residual stress and deformation of thin-walled parts under ultra-precision cutting are currently restricted. In this paper, we first introduced the GIXRD method to solve the technology absence for measuring the ultra-precision cutting conducted residual stress. Based on GIXRD, TEM and dynamic interferometer measurement, the relationship between grain state, residual stress and deformation of thin-walled parts was established. The research works had shown that reducing the cutting depth within a certain range was beneficial to reduce residual stress and deformation. However, there was an extreme point of the cutting parameter. If this extreme point was exceeded, the cutting action would gradually transform from shearing to pressing and pushing, resulting in an increase in residual stress. Therefore, there was an extremely small cutting parameter that minimized residual stress and deformation of the thin-walled member. The results were helpful to understand the mechanism of deformation of thin-walled parts from the perspective of grain size and residual stress, and accordingly established a deformation control method.

中文翻译:

超精密切削下薄壁零件表面晶粒状态、残余应力及其对变形的影响研究

薄壁零件具有重量轻、结构强度高等优点,在工业领域得到广泛应用。随着对形状精度和表面质量要求的提高,超精密切削越来越多地用于制造薄壁零件。但由于超精密切削造成的残余应力影响范围小(小于10[公式:见正文]m),常规方法无法准确测量。因此,目前对超精密切削下薄壁零件残余应力和变形的研究受到限制。在本文中,我们首先介绍了GIXRD方法,以解决测量超精密切削传导残余应力的技术缺失。基于 GIXRD、TEM 和动态干涉仪测量,建立了薄壁零件晶粒状态、残余应力和变形之间的关系。研究表明,在一定范围内减小切削深度有利于减少残余应力和变形。然而,切削参数存在一个极值点。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。建立了薄壁零件的残余应力和变形。研究表明,在一定范围内减小切削深度有利于减少残余应力和变形。然而,切削参数存在一个极值点。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。建立了薄壁零件的残余应力和变形。研究表明,在一定范围内减小切削深度有利于减少残余应力和变形。然而,切削参数存在一个极值点。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。研究表明,在一定范围内减小切削深度有利于减少残余应力和变形。然而,切削参数存在一个极值点。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。研究表明,在一定范围内减小切削深度有利于减少残余应力和变形。然而,切削参数存在一个极值点。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。如果超过这个极限点,切削作用会逐渐从剪切转变为挤压和推动,导致残余应力增加。因此,存在使薄壁构件的残余应力和变形最小化的极小的切削参数。研究结果有助于从晶粒尺寸和残余应力的角度理解薄壁零件的变形机理,并据此建立变形控制方法。
更新日期:2020-10-09
down
wechat
bug