当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Alternative Circuitry for a Transformer-Coupled LC Inversion Generator
IEEE Transactions on Plasma Science ( IF 1.5 ) Pub Date : 2020-10-01 , DOI: 10.1109/tps.2020.3016949
Rainer Bischoff

A new alternative circuitry for the transformer-coupled LC inversion generator (TCLCG) is presented. In principle, a TCLCG consists of one in-phase 1:1 transformer and two capacitors per elementary stage. First, the two capacitors will be charged via the primary winding of the transformer in opposite polarity. Afterward, voltage multiplication is being achieved by a closing switch which shortcuts the two capacitors. The odd-numbered capacitor discharges slowly through the primary inductance of the transformer, whereas the even-numbered capacitor discharges fastly through only the leakage inductance of the transformer and, thus, inverts. However, one of the main drawbacks of the classical “textbook” TCLCG circuitry is caused by the fact that connection of the transformers of the higher generator stages is done through the transformers of the lower stages. Consequently, compensation techniques must be applied, i.e., adjustment of the even capacitors and/or transformer inductance values, in order to ensure effective voltage multiplication by means of constructive superposition of each stage. This limits the maximum practical generator stage number and rise time. In the alternative TCLCG circuit principle, the connections to the primary and secondary inputs of the transformers of the higher stages are being done directly from the closing switch. Now, the transformers are in parallel to each other, not in series as in the classical TCLCG circuitry. As a result, the even-numbered capacitors see the same leakage inductance and compensation techniques are no longer necessary. The first experimental verification was done by direct comparison of the classical circuitry and alternative circuitry for two compact two-stage TCLCGs with identical transformers and capacitances. The results showed that the alternative circuitry leads to a fast generator rise time of 25 ns, about 38% faster than the classical circuitry, while still reaching the same generator efficiency of 67%. Additionally, rise time proved to stay constant at 25 ns even if adding the third stage to the TCLCG with the new alternative geometry. This version was still 46% faster than an optimized classical three-stage TCLCG using the asymmetric compensation method.

中文翻译:

变压器耦合 LC 反相发生器的替代电路

介绍了一种用于变压器耦合 LC 逆变发生器 (TCLCG) 的新替代电路。原则上,TCLCG 由一个同相 1:1 变压器和每个初级阶段的两个电容器组成。首先,两个电容器将通过变压器的初级绕组以相反极性充电。之后,电压倍增是通过闭合开关实现的,该开关使两个电容器短路。奇数电容通过变压器的初级电感缓慢放电,而偶数电容仅通过变压器的漏电感快速放电,从而反转。然而,经典“教科书”TCLCG 电路的主要缺点之一是由于较高发电机级的变压器连接是通过较低级的变压器完成的。因此,必须应用补偿技术,即调整偶数电容器和/或变压器电感值,以通过每一级的结构性叠加来确保有效的电压倍增。这限制了最大实际发电机级数和上升时间。在替代的 TCLCG 电路原理中,上级变压器的初级和次级输入端的连接是直接从闭合开关完成的。现在,变压器彼此并联,而不是像经典的 TCLCG 电路那样串联。因此,偶数电容看到相同的漏电感和补偿技术不再是必要的。第一次实验验证是通过直接比较具有相同变压器和电容的两个紧凑型两级 TCLCG 的经典电路和替代电路来完成的。结果表明,替代电路产生 25 ns 的快速发生器上升时间,比经典电路快约 38%,同时仍达到 67% 的相同发生器效率。此外,即使将第三级添加到具有新替代几何结构的 TCLCG,上升时间也证明保持恒定在 25 ns。此版本仍比使用非对称补偿方法的优化经典三级 TCLCG 快 46%。第一次实验验证是通过直接比较具有相同变压器和电容的两个紧凑型两级 TCLCG 的经典电路和替代电路来完成的。结果表明,替代电路产生 25 ns 的快速发生器上升时间,比经典电路快约 38%,同时仍达到 67% 的相同发生器效率。此外,即使将第三级添加到具有新替代几何结构的 TCLCG,上升时间也证明保持恒定在 25 ns。此版本仍比使用非对称补偿方法的优化经典三级 TCLCG 快 46%。第一次实验验证是通过直接比较具有相同变压器和电容的两个紧凑型两级 TCLCG 的经典电路和替代电路来完成的。结果表明,替代电路产生 25 ns 的快速发生器上升时间,比经典电路快约 38%,同时仍达到 67% 的相同发生器效率。此外,即使将第三级添加到具有新替代几何结构的 TCLCG,上升时间也证明保持恒定在 25 ns。此版本仍比使用非对称补偿方法的优化经典三级 TCLCG 快 46%。结果表明,替代电路产生 25 ns 的快速发生器上升时间,比经典电路快约 38%,同时仍达到 67% 的相同发生器效率。此外,即使将第三级添加到具有新替代几何结构的 TCLCG,上升时间也证明保持恒定在 25 ns。此版本仍比使用非对称补偿方法的优化经典三级 TCLCG 快 46%。结果表明,替代电路产生 25 ns 的快速发生器上升时间,比经典电路快约 38%,同时仍达到 67% 的相同发生器效率。此外,即使将第三级添加到具有新替代几何结构的 TCLCG,上升时间也证明保持恒定在 25 ns。此版本仍比使用非对称补偿方法的优化经典三级 TCLCG 快 46%。
更新日期:2020-10-01
down
wechat
bug