当前位置: X-MOL 学术Am. J. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A process-based ecosystem model (Paleo-BGC) to simulate the dynamic response of Late Carboniferous plants to elevated O2 and aridification
American Journal of Science ( IF 2.9 ) Pub Date : 2020-09-01 , DOI: 10.2475/09.2020.01
Joseph D. White , Isabel P. Montañez , Jonathan P. Wilson , Christopher J. Poulsen , Jennifer C. McElwain , William A. DiMichele , Michael T. Hren , Sophia Macarewich , Jon D. Richey , William J. Matthaeus

Ecosystem process models provide unique insight into terrestrial ecosystems by employing a modern understanding of ecophysiological processes within a dynamic environmental framework. We apply this framework to deep-time ecosystems made up of extinct plants by constructing plant functional types using fossil remains and simulating—as close as possible—the in vivo response of extinct taxa to their paleoclimatic environment. Ecosystem process models provide unique insight into terrestrial ecosystems by employing a modern understanding of ecophysiological processes within a dynamic environmental framework. We apply this framework to deep-time ecosystems made up of extinct plants by constructing plant functional types using fossil remains and simulating—as close as possible—the in vivo response of extinct taxa to their paleoclimatic environment. To accomplish this, foliar characteristics including maximum stomatal conductance, distance from leaf vein to stomata, and cuticular carbon and nitrogen were input as model parameters derived from measurements of well-preserved Pennsylvanian-age fossil leaves. With these inputs, we modeled a terrestrial tropical forest ecosystem dominated by “iconic” plant types of the Pennsylvanian (∼323–299 Ma) including arborescent lycopsids, medullosans, cordaitaleans, and tree ferns using a modified version of the process model BIOME-BGC, which we refer to as Paleo-BGC. Modeled carbon and water—and, for the first time, nitrogen—budgets of a tropical ecosystem from Euramerica driven by daily meteorology are simulated using the Global Circulation Model GENESIS 3.0. Key findings are: lycopsids have the lowest daily leaf water potential, soil water content, surface runoff, and degree of nitrogen leaching indicating an intensive water use strategy compared to medullosans, cordaitaleans, and tree ferns that have increasingly lower simulated water use, greater surface, and nitrogen loss in this order; modeled vegetation response to aridification, which was caused by reduced precipitation and intensified through the close of the Carboniferous and into the Permian shows that lycopsids and medullosans have the lowest tolerance for precipitation decrease compared to cordaitaleans and tree ferns, consistent with the paleobotanical record of occurrence of floral turnovers through the Middle Pennsylvanian through earliest Permian; elevated atmospheric pO2, hypothesized as characteristic for the latter half of the Pennsylvanian and early Permian (∼299–272 Ma), caused higher atmospheric pressure reducing plant transpiration, higher surface water runoff rates, and increased nitrogen export for all plant types simulated, manifested most strongly in the lycopsid dominated ecosystems—with overall only a small reduction in net daily assimilation (≈1 μmol CO2 m−2 s−1). Both aridification and elevated atmospheric oxygen reduced transpiration, increased water retention in soils, with higher surface runoff. With more discharge, enhanced and higher short-term surface soil loss and silicate weathering would have been possible in broad regions of the paleotropics during the late Carboniferous and early Permian. These results are only obtainable by integrating multiple, fossil-derived measurements into the simulation framework of an ecosystem model that utilizes daily meteorology.

中文翻译:

基于过程的生态系统模型 (Paleo-BGC) 模拟晚石炭纪植物对 O2 升高和干旱化的动态响应

生态系统过程模型通过在动态环境框架内采用对生态生理过程的现代理解,提供对陆地生态系统的独特见解。我们通过使用化石遗骸构建植物功能类型并尽可能接近地模拟已灭绝分类群对其古气候环境的体内反应,将此框架应用于由已灭绝植物组成的深时生态系统。生态系统过程模型通过在动态环境框架内采用对生态生理过程的现代理解,提供对陆地生态系统的独特见解。我们通过使用化石遗骸构建植物功能类型并尽可能接近地模拟已灭绝分类群对其古气候环境的体内反应,将此框架应用于由已灭绝植物组成的深时生态系统。为了实现这一点,将包括最大气孔导度、叶脉到气孔的距离以及表皮碳和氮在内的叶特征作为模型参数输入,这些参数源自对保存完好的宾夕法尼亚时代化石叶的测量。有了这些输入,我们模拟了一个陆地热带森林生态系统,该生态系统以宾夕法尼亚州(~323-299 Ma)的“标志性”植物类型为主,包括树状石蒜、髓、cordaitaleans 和树蕨,使用过程模型的修改版本 BIOME-BGC ,我们将其称为 Paleo-BGC。使用全球环流模型 GENESIS 3.0 模拟由日常气象驱动的欧美洲热带生态系统的碳和水(以及首次氮)预算。主要发现是:石蒜素具有最低的每日叶水势、土壤含水量、地表径流和氮浸出程度表明与具有越来越低的模拟用水量、更大的地表和氮损失的髓类植物、cordaitaleans 和树蕨类植物相比,这是一种集约用水策略;模拟植被对干旱化的反应,干旱化是由降水减少引起的,并在石炭纪结束和进入二叠纪时加剧,表明与cordaitaleans 和树蕨类植物相比,石竹属植物和髓质植物对降水减少的耐受性最低,这与发生的古植物学记录一致宾夕法尼亚中部到二叠纪早期的花卉更替;大气 pO2 升高,假设是宾夕法尼亚时代后半期和二叠纪早期(~299-272 Ma)的特征,导致更高的大气压力减少植物蒸腾作用,更高的地表水径流速率,以及所有模拟植物类型的氮输出增加,这在以石蒜素为主的生态系统中表现得最为明显——总体而言,每日净同化仅小幅减少(≈1 μmol CO2 m−) 2 秒-1)。干旱化和大气氧含量升高都减少了蒸腾作用,增加了土壤中的保水量,增加了地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。较高的地表水径流率和所有模拟植物类型的氮输出增加,在以石蒜素为主的生态系统中表现得最为强烈——总体而言,每日净同化仅略有减少(≈1 μmol CO2 m-2 s-1)。干旱化和大气氧含量升高都减少了蒸腾作用,增加了土壤中的保水量,增加了地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。较高的地表水径流率和所有模拟植物类型的氮输出增加,在以石蒜素为主的生态系统中表现得最为强烈——总体而言,每日净同化仅略有减少(≈1 μmol CO2 m-2 s-1)。干旱化和大气氧含量升高都减少了蒸腾作用,增加了土壤中的保水量,增加了地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。在以石蒜素为主的生态系统中表现得最为强烈——总体而言,每日净同化量仅略有减少(≈1 μmol CO2 m-2 s-1)。干旱化和大气氧含量升高都减少了蒸腾作用,增加了土壤中的保水性,增加了地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。在以石蒜素为主的生态系统中表现得最为强烈——总体而言,每日净同化量仅略有减少(≈1 μmol CO2 m-2 s-1)。干旱化和大气氧含量升高都减少了蒸腾作用,增加了土壤中的保水量,增加了地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。增加土壤中的保水性,增加地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。增加土壤中的保水性,增加地表径流。在石炭纪晚期和二叠纪早期的广阔古热带地区,随着排放量的增加,短期地表土壤流失和硅酸盐风化可能会加剧和加剧。这些结果只有通过将多个化石衍生的测量结果整合到利用日常气象的生态系统模型的模拟框架中才能获得。
更新日期:2020-09-01
down
wechat
bug