当前位置: X-MOL 学术Proc. Combust. Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma
Proceedings of the Combustion Institute ( IF 5.3 ) Pub Date : 2020-10-10 , DOI: 10.1016/j.proci.2020.08.033
Galia Faingold , Joseph K. Lefkowitz

This numerical study of the ignition characteristics of ammonia in a pulsed plasma discharge includes the assembly of a kinetic model for the oxidation of ammonia/oxygen/helium mixtures under a plasma discharge. The model was used to perform a series of simulations under varying pulsed discharge frequencies and pulse numbers, at atmospheric pressure and moderate to high temperatures (600–1500 K). A zero-dimensional solver which combines the ZDPlasKin and CHEMKIN software is used to explore the effect of pulse number and frequency on ignition delay time. For a moderate amount of pulses, a reduction of 40–60% in ignition delay time is achieved, with higher pulse repetition frequencies (PRFs) yielding shorter ignition delay times. Analysis of OH radical time evolution reveals that high PRFs support an increasing radical pool at low temperatures, whereas at lower PRFs radicals recombine in between pulses. In the thermal runaway phase, the radicals formed in conventional chain branching events are prevalent, so that OH formed in later pulses has little effect. When looking low temperatures and high PRFs, higher pulse frequencies allow for lower initial temperatures which will result in ignition. At a high enough frequency, the hysteresis of ignition and extinction is altered due to a high amount of radicals supplied and sustained by the plasma, so that there is a smooth transition and reactions at all temperatures.



中文翻译:

非热等离子体中 NH3/O2/He 点火极限的数值研究

这项对脉冲等离子体放电中氨的点火特性的数值研究包括组装在等离子体放电下氨/氧/氦混合物氧化的动力学模型。该模型用于在大气压和中高温(600-1500 K)下,在不同的脉冲放电频率和脉冲数下进行一系列模拟。结合 ZDPlasKin 和 CHEMKIN 软件的零维求解器用于探索脉冲数和频率对点火延迟时间的影响。对于中等数量的脉冲,点火延迟时间减少了 40-60%,更高的脉冲重复频率 (PRF) 产生更短的点火延迟时间。对 OH 自由基时间演化的分析表明,高 PRF 支持在低温下增加自由基池,而在较低的 PRF 下,自由基在脉冲之间重新组合。在热失控阶段,在常规链支化事件中形成的自由基很普遍,因此在后面的脉冲中形成的 OH 几乎没有影响。当观察低温和高 PRF 时,较高的脉冲频率允许较低的初始温度,这将导致点火。在足够高的频率下,由于等离子体提供和维持的大量自由基,点火和熄灭的滞后会发生变化,因此在所有温度下都有平滑的过渡和反应。较高的脉冲频率允许较低的初始温度,这将导致点火。在足够高的频率下,由于等离子体提供和维持的大量自由基,点火和熄灭的滞后会发生变化,因此在所有温度下都有平滑的过渡和反应。较高的脉冲频率允许较低的初始温度,这将导致点火。在足够高的频率下,由于等离子体提供和维持的大量自由基,点火和熄灭的滞后会发生变化,因此在所有温度下都有平滑的过渡和反应。

更新日期:2020-10-10
down
wechat
bug