当前位置: X-MOL 学术Physica E Low Dimens. Syst. Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis and physical property of GaN:Mn nanoparticles
Physica E: Low-dimensional Systems and Nanostructures ( IF 2.9 ) Pub Date : 2020-10-08 , DOI: 10.1016/j.physe.2020.114445
Yongsheng Xu , Binbin Yao , Erwei Wang , Ying Guo , Yinbo Fan , Qiliang Cui

The GaN:Mn nanostructure was prepared using direct current (DC) arc discharge plasma method. No catalysts or templates are involved in the experiment. The test of energy dispersive x-ray spectroscopy (EDXS) detected the signals of Ga, N, Mn, and the Mn signal strength is slightly stronger with the increasing Mn content. The X-ray diffraction peak (XRD) is sharp, and there is a clear XRD peak shift towards larger angle with the increase of doping concentration. It is indicated that GaN:Mn nanoparticles have good crystallinity, and the introduced Mn has changed the lattice parameter. Photoluminescence (PL) shows that the absorption of visible light is a relatively broad range. The Mn doped induced the energy levels in the band gap, leading to the increasing of yield of electron-hole pair, and the optical property enhanced with the increasing of Mn concentration. Meanwhile the complicated magnetic transition has been found due to the quantum tunneling of magnetization. The magnetism is from the doped Mn, and its concentration impacts the strength of magnetic coupling.



中文翻译:

GaN:Mn纳米粒子的合成与物理性能

使用直流(DC)电弧放电等离子体方法制备了GaN:Mn纳米结构。实验中不涉及催化剂或模板。能量色散X射线光谱(EDXS)测试检测到Ga,N,Mn信号,并且随着Mn含量的增加,Mn信号强度略强。X射线衍射峰(XRD)很尖锐,并且随着掺杂浓度的增加,有明显的XRD峰移向更大的角度。结果表明,GaN:Mn纳米颗粒具有良好的结晶度,而引入的Mn改变了晶格参数。光致发光(PL)表明可见光的吸收范围相对较大。锰的掺杂在带隙中感应出能级,导致电子-空穴对的产率增加,随着Mn浓度的增加,光学性能增强。同时,由于磁化的量子隧穿,已经发现了复杂的磁跃迁。磁性来自掺杂的Mn,其浓度会影响磁耦合的强度。

更新日期:2020-10-11
down
wechat
bug