当前位置: X-MOL 学术J. Mater. Res. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study
Journal of Materials Research and Technology ( IF 6.2 ) Pub Date : 2020-10-09 , DOI: 10.1016/j.jmrt.2020.09.087
Mohammad Azad Alam , Hamdan H. Ya , Mohammad Azeem , Patthi Bin Hussain , Mohd Sapuan bin Salit , Rehan Khan , Sajjad Arif , Akhter Husain Ansari

In present work, Aluminium matrix composites reinforced with x wt.% SiC (x = 5, 7.5 and 10) microparticles were synthesised by powder metallurgy route. The microhardness (VHN) of the Al/SiC composites were investigated using Response Surface Methodology (RSM) and Artificial neural network (ANN) approach. Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Elemental mapping and Optical microscopy were done for the microstructural investigations. The X-ray diffraction (XRD) analysis was done for received powders and composites samples for phase recognition and existence of reinforcement particles (SiC) in the synthesised sintered composites. The design of experiments based on RSM was utilised following the central composite design method. Empirical models have been developed by considering variance analysis (ANOVA), to establish relationships among the control factors and the response variables. A feed-forward back-propagation neural network (FF-BPNN) was used to determine the qualitative characteristics of the process, and the accuracy of the BPNN system was attributed with mathematical models based on RSM model. The ANN model predicted surface hardness values are near the experimental findings. It is established that the developed models can be used to predict the hardness of the surface within the investigation range. The composite with reinforcement 7.5% revealed higher sintered density and Vickers microhardness due to the uniform distribution of filler particles in the Al matrix featuring no pores. The results indicate overall higher accuracy in the ANN method than RSM model.



中文翻译:

基于RSM和ANN的Al / SiC烧结复合材料硬度建模与优化研究。

在目前的工作中,通过粉末冶金方法合成了以x wt。%SiC(x = 5、7.5和10)微粒增强的铝基复合材料。使用响应表面方法(RSM)和人工神经网络(ANN)方法研究了Al / SiC复合材料的显微硬度(VHN)。进行了扫描电子显微镜(SEM),能量色散X射线光谱(EDS),元素图谱和光学显微镜的显微结构研究。对接收的粉末和复合材料样品进行了X射线衍射(XRD)分析,以识别相并在合成的烧结复合材料中存在增强颗粒(SiC)。遵循中心综合设计方法,利用基于RSM的实验设计。通过考虑方差分析(ANOVA)建立了经验模型,建立控制因素和响应变量之间的关系。使用前馈反向传播神经网络(FF-BPNN)来确定过程的定性特征,并且基于RSM模型的数学模型将BPNN系统的准确性归因于该过程。ANN模型预测的表面硬度值接近实验结果。建立的开发模型可以用于预测研究范围内的表面硬度。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。使用前馈反向传播神经网络(FF-BPNN)来确定过程的定性特征,并且基于RSM模型的数学模型将BPNN系统的准确性归因于该过程。ANN模型预测的表面硬度值接近实验结果。建立的开发模型可以用于预测研究范围内的表面硬度。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。使用前馈反向传播神经网络(FF-BPNN)来确定过程的定性特征,并且基于RSM模型的数学模型将BPNN系统的准确性归因于该过程。ANN模型预测的表面硬度值接近实验结果。建立的开发模型可以用于预测研究范围内的表面硬度。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。BPNN系统的准确性归因于基于RSM模型的数学模型。ANN模型预测的表面硬度值接近实验结果。建立的开发模型可以用于预测研究范围内的表面硬度。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。BPNN系统的准确性归因于基于RSM模型的数学模型。ANN模型预测的表面硬度值接近实验结果。建立的开发模型可以用于预测研究范围内的表面硬度。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。由于填料颗粒均匀分布在无孔的Al基体中,具有7.5%增强强度的复合材料显示出更高的烧结密度和维氏显微硬度。结果表明,与RSM模型相比,ANN方法的总体准确性更高。

更新日期:2020-10-11
down
wechat
bug