当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-10-10 , DOI: 10.1016/j.cam.2020.113229
Jianguo Huang; Yue Yu

This paper is concerned with developing a medius error analysis for several nonconforming virtual element methods (VEMs) for the Poisson equation and the biharmonic equation in two dimensions, with the family of polygonal meshes satisfying a very general geometric assumption given in Brezzi et al. (2009) and Chen and Huang (2018). After some technical derivation, the inverse inequalities and norm equivalence are derived for some conforming VEMs. With the help of these results and following some ideas in Gudi (2010), we obtain medius error estimates for the nonconforming VEMs under discussion, which are optimal up to the regularity of the weak solution. Such estimates also imply that the nonconforming VEMs are convergent even if the exact solution only belongs to the admissible space while the right-hand side of the related equation has some additional regularity.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug