当前位置: X-MOL 学术J. Aerosol Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measuring electrostatic charge on pneumatically generated spray drops
Journal of Aerosol Science ( IF 3.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jaerosci.2020.105691
Mei W. Tessum , Peter C. Raynor

Abstract Activities such as the suppression of coal dust would benefit from an improved understanding about how the presence of surfactant alters the charge distribution of spray drops. However, there is no standard method to measure charge and size distributions of nozzle-generated spray drops. To fill this gap, a new spray drop charge measurement system was developed to measure a broad range of sizes and electrostatic charges for spray drops based on the principle that the free-falling drops can be separated according to their electrostatic mobility in an electrical field with known strength. High and low concentration (1 × 10−4 and 1 × 10−6 M, respectively) anionic, cationic, and nonionic surfactant sprays and water spray were tested. Nonionic and cationic surfactant-containing sprays and water spray carried net positive charge on average, while anionic surfactant-containing sprays tended to carry net negative charge on average. Increasing surfactant concentration did not increase the magnitude of drop charge among the tested surfactants. Drop charge level was significantly higher among larger size drops, with the average charge per particle on 320 μm drops 1000 to 10,000 times higher than on 20 μm drops. The spray drop charge measurement system developed in this study can be used to measure spray drops with an electrostatic charge ranging from 0 to 960,000 charges per drop and diameter ranging from 20 to 270 μm. Potential design improvements described in this study and additional computing power could improve measurement accuracy and precision, as well as the capacity of the system.

中文翻译:

测量气动产生的喷雾滴上的静电荷

摘要 诸如抑制煤尘之类的活动将受益于对表面活性剂的存在如何改变喷雾滴电荷分布的更好理解。然而,没有标准方法来测量喷嘴产生的喷雾滴的电荷和尺寸分布。为了填补这一空白,开发了一种新的喷雾液滴电荷测量系统,根据自由落体液滴在电场中的静电迁移率可以将其分离的原理,测量范围广泛的喷雾液滴的尺寸和静电荷。已知强度。测试了高浓度和低浓度(分别为 1 × 10−4 和 1 × 10−6 M)阴离子、阳离子和非离子表面活性剂喷雾和水喷雾。含非离子和阳离子表面活性剂的喷雾剂和水喷雾剂平均带净正电荷,而含阴离子表面活性剂的喷雾剂平均往往带有净负电荷。在测试的表面活性剂中,增加表面活性剂浓度并没有增加液滴电荷的大小。在较大尺寸的液滴中,液滴的电荷水平显着更高,320 μm 液滴上的每个粒子的平均电荷比 20 μm 液滴上的平均电荷高 1000 到 10,000 倍。本研究开发的喷雾液滴电荷测量系统可用于测量静电荷范围为每滴 0 至 960,000 个电荷和直径范围为 20 至 270 μm 的喷雾液滴。本研究中描述的潜在设计改进和额外的计算能力可以提高测量精度和精度,以及系统的容量。在测试的表面活性剂中,增加表面活性剂浓度并没有增加液滴电荷的大小。在较大尺寸的液滴中,液滴的电荷水平显着更高,320 μm 液滴上的每个粒子的平均电荷比 20 μm 液滴上的平均电荷高 1000 到 10,000 倍。本研究开发的喷雾液滴电荷测量系统可用于测量静电荷范围为每滴 0 至 960,000 个电荷和直径范围为 20 至 270 μm 的喷雾液滴。本研究中描述的潜在设计改进和额外的计算能力可以提高测量精度和精度,以及系统的容量。在测试的表面活性剂中,增加表面活性剂浓度并没有增加液滴电荷的大小。在较大尺寸的液滴中,液滴的电荷水平显着更高,320 μm 液滴上的每个粒子的平均电荷比 20 μm 液滴上的平均电荷高 1000 到 10,000 倍。本研究开发的喷雾液滴电荷测量系统可用于测量静电荷范围为每滴 0 至 960,000 个电荷和直径范围为 20 至 270 μm 的喷雾液滴。本研究中描述的潜在设计改进和额外的计算能力可以提高测量精度和精度,以及系统的容量。320 μm 液滴的平均电荷比 20 μm 液滴高 1000 到 10,000 倍。本研究开发的喷雾液滴电荷测量系统可用于测量静电荷范围为每滴 0 至 960,000 个电荷和直径范围为 20 至 270 μm 的喷雾液滴。本研究中描述的潜在设计改进和额外的计算能力可以提高测量精度和精度,以及系统的容量。320 μm 液滴的平均电荷比 20 μm 液滴高 1000 到 10,000 倍。本研究开发的喷雾液滴电荷测量系统可用于测量静电荷范围为每滴 0 至 960,000 个电荷和直径范围为 20 至 270 μm 的喷雾液滴。本研究中描述的潜在设计改进和额外的计算能力可以提高测量精度和精度,以及系统的容量。
更新日期:2021-01-01
down
wechat
bug