当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nondestructive quantification of single-cell nuclear and cytoplasmic mechanical properties based on large whole-cell deformation
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-10-08 , DOI: 10.1039/d0lc00725k
Jifeng Ren 1 , Yongshu Li 2 , Shuhuan Hu 3 , Yi Liu 1 , Sai Wah Tsao 4 , Denvid Lau 5 , Guannan Luo 6 , Chi Man Tsang 2 , Raymond H W Lam 7
Affiliation  

The mechanical properties of cell nuclei have been recognized to reflect and modulate important cell behaviors such as migration and cancer cell malignant tendency. However, these nuclear properties are difficult to characterize accurately using conventional measurement methods, which are often based on probing or deforming local sites over a nuclear region. The corresponding results are sensitive to the measurement position, and they are not decoupled from the cytoplasmic properties. Microfluidics is widely recognized as a promising technique for bioassay and phenotyping. In this report, we develop a simple and nondestructive approach for the single-cell quantification of nuclear elasticity based on microfluidics by considering different deformation levels of a live cell captured along a confining microchannel. We apply two inlet pressure levels to drive the flow of human nasopharyngeal epithelial cells (NP460) and human nasopharyngeal cancerous cells (NPC43) into the microchannels. A model considering the essential intracellular components (cytoplasm and nucleus) for describing the mechanics of a cell deforming along the confining microchannel is used to back-calculate the cytoplasmic and nuclear properties. On the other hand, we also apply a widely used chemical nucleus extraction technique to examine its possible effects (e.g., reduced nuclear modulus and reduced lamin A/C expression). To determine if the decoupled nuclear properties are representative of cancer-related attributes, we classify the NP460 and NPC43 cells using the decoupled physical properties as classification factors, resulting in an accuracy of 79.1% and a cell-type specificity exceeding 74%. It should be mentioned that the cells can be recollected at the device outlet after the nondestructive measurement. Hence, the reported cell elasticity measurement can be combined with downstream genetic and biochemical assays for general cell research and cancer diagnostic applications.

中文翻译:

基于大全细胞变形的单细胞核和细胞质力学特性的无损定量

已经认识到细胞核的机械性质可以反映和调节重要的细胞行为,例如迁移和癌细胞恶性倾向。但是,使用常规的测量方法很难准确地表征这些核特性,而常规的测量方法通常是基于对核区域上的局部位置进行探测或变形。相应的结果对测量位置敏感,并且不会与细胞质特性脱钩。微流体技术被广泛认为是一种用于生物测定和表型分析的有前途的技术。在本报告中,我们通过考虑沿约束微通道捕获的活细胞的不同变形水平,开发了一种基于微流控技术的单细胞定量定量核弹性的简单无损方法。我们应用两个入口压力水平来驱动人类鼻咽上皮细胞(NP460)和人类鼻咽癌细胞(NPC43)进入微通道。考虑到基本细胞内成分(细胞质和细胞核)的模型用于描述沿限制微通道变形的机制,该模型用于反算细胞质和核特性。另一方面,我们还应用了广泛使用的化学核提取技术来检查其可能的作用(考虑到基本细胞内成分(细胞质和细胞核)的模型用于描述沿限制微通道变形的机制,该模型用于反算细胞质和核特性。另一方面,我们还应用了广泛使用的化学核提取技术来检查其可能的作用(考虑到基本细胞内成分(细胞质和细胞核)的模型用于描述沿限制微通道变形的机制,该模型用于反算细胞质和核特性。另一方面,我们还应用了广泛使用的化学核提取技术来检查其可能的作用(例如降低的核模量和降低的lamin A / C表达)。为了确定解耦的核特性是否代表癌症相关属性,我们使用解耦的物理特性作为分类因子对NP460和NPC43细胞进行分类,得出的准确度为79.1%,细胞类型特异性超过74%。应该提到的是,在进行非破坏性测量之后,可以在设备出口处收集细胞。因此,报告的细胞弹性测量可以与下游的遗传和生化分析相结合,用于常规细胞研究和癌症诊断应用。
更新日期:2020-11-03
down
wechat
bug