当前位置: X-MOL 学术bioRxiv. Anim. Behav. Cognit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbiome-Gut-Brain-Axis communication influences metabolic switch in the mosquito Anopheles culicifacies
bioRxiv - Animal Behavior and Cognition Pub Date : 2020-10-08 , DOI: 10.1101/774430
Tanwee Das De , Sanjay Tevatiya , Charu Chauhan , Seena Kumari , Deepak Singla , Vartika Srivastava , Jyoti Rani , Punita Sharma , Yasha Hasija , Kailash C Pandey , Rajnikant Dixit

Periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as metabolic switch. Although the down-regulation of olfactory factors is key to restrain host-attraction, how the gut metabolic switch modulates brain functions, and resilience physiological homeostasis remains unexplored. Here, we demonstrate that the protein-rich diet induces mitochondrial function and energy metabolism, possibly shifting the brain engagement to manage organismal homeostasis. A dynamic expression pattern of neuro-signaling and neuro-modulatory genes in both the brain and gut indicates an optimal brain-distant organ communication. Even after decapitation, significant modulation of the neuro-modulator receptor genes as well as quantitative estimation of neurotransmitters (NTs), together confer the gut ability to serve as a second brain. Finally, data on comparative metagenomic analysis and altered NTs dynamics of naive and aseptic mosquitoes provide the initial evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Conclusively, our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.

中文翻译:

微生物-肠-脑-轴通讯影响蚊子按蚊的代谢转换

成年雌性蚊子定期摄入富含蛋白质的血粉会导致其先天生理状态发生剧烈的新陈代谢变化,这被称为新陈代谢转换。尽管嗅觉因子的下调是抑制宿主吸引力的关键,但肠道代谢开关如何调节大脑功能以及弹性生理平衡仍未得到探索。在这里,我们证明富含蛋白质的饮食会诱导线粒体功能和能量代谢,可能会转移大脑参与度来控制机体动态平衡。在大脑和肠道中神经信号和神经调节基因的动态表达模式表明了最佳的大脑与远处的器官沟通。即使在斩首之后 神经调节剂受体基因的显着调节以及神经递质(NTs)的定量估计,共同赋予了肠道充当第二脑的能力。最后,有关比较宏基因组学分析和幼稚和无菌蚊子NT动态变化的数据提供了初步证据,即肠道内共生菌是主要神经活性分子合成的关键调节剂。最终,我们的数据建立了对蚊子中微生物组-肠-脑-轴通讯的新概念理解。
更新日期:2020-10-08
down
wechat
bug