当前位置: X-MOL 学术Results Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational analysis of octagonal torus-shaped nano meta-atom through fractional absorption bandwidth for applications in the terahertz regime
Results in Physics ( IF 4.4 ) Pub Date : 2020-10-08 , DOI: 10.1016/j.rinp.2020.103470
Mohammad Tariqul Islam , Ahasanul Hoque , Mohd Hafiz Baharuddin , Norsuzlin Mohd Sahar , Hatem Rmili

In this paper, we present a computational analysis method for the study of silicon dioxide (SiO2) graphene-based and amorphous silicon (a-Si)-graphene based nano meta-atoms in the terahertz (THz) regime. The proposed meta-atoms were modeled using a SiO2 substrate, optimized using a-Si substrate, and “sandwiched” between graphene layers. The octagonal-shaped torus was geometrically designed as a 3D structure to achieve optimal electromagnetic wave absorption from separate atoms. The upper and lower tori had identical diagonal arms to capture the maximum number of photons with minimal absorption losses. Graphene was chosen as the upper and ground layer material to optimize the electrical and optical properties of our proposed nano metamaterial. Finally, the following four fractional bandwidths with absorption percentages were optimized from the simulation: 4 bands (225.7-254.74 THz, 99.8%; 356.64-401.1 THz, 97.28%; 525.4 THz, 99.19%; 656.34 THz, 94.94%). The multi-band fractional absorption characteristic in the THz regime highlighted our proposed nano meta-atom as a potential candidate for absorption in the infrared and visible spectrum.



中文翻译:

通过分数吸收带宽对八角环形纳米亚原子的计算分析,用于太赫兹状态

在本文中,我们提出了一种计算分析方法,用于研究以太赫兹(THz)态为基础的二氧化硅(SiO 2)石墨烯基和非晶硅(a-Si)-石墨烯基纳米亚原子。拟议的准原子使用SiO 2衬底建模,使用a-Si衬底优化,并“夹在”石墨烯层之间。八角形的圆环在几何上设计为3D结构,以实现最佳的电磁波吸收效果。上部和下部的托里具有相同的对角臂,以最小的吸收损耗捕获最大数量的光子。选择石墨烯作为上层和底层材料,以优化我们提出的纳米超材料的电学和光学性能最后,通过仿真优化了以下四个具有吸收百分比的分数带宽:4个频段(225.7-254.74 THz,99.8%; 356.64-401.1 THz,97.28%; 525.4 THz,99.19%; 656.34 THz,94.94%)。在太赫兹范围内的多波段分数吸收特性突出了我们提出的纳米亚原子,它是潜在的候选红外和可见光谱吸收物。

更新日期:2020-10-08
down
wechat
bug