当前位置: X-MOL 学术Tectonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformation Analysis in the Barents Sea in Relation to Paleogene Transpression Along the Greenland‐Eurasia Plate Boundary
Tectonics ( IF 3.3 ) Pub Date : 2020-10-06 , DOI: 10.1029/2020tc006172
Sébastien Gac 1 , Alexander Minakov 2 , Grace E. Shephard 2 , Jan Inge Faleide 1, 2, 3 , Sverre Planke 2, 3, 4
Affiliation  

Late Cretaceous‐Cenozoic contractional structures are widespread in the Barents Sea. While the exact dating of the deformation is unclear, it can only be inferred that the contraction is younger than the early Cretaceous. One likely contractional mechanism is related to Greenland Plate kinematics at Paleogene times. We use a thin sheet finite element modeling approach to compute deformation within the Barents Sea in response to the Greenland‐Eurasia relative motions during the Paleogene. The analytical solution for the 3‐D folding of sediments above basement faults is used to assess possibilities for folding. Two existing Greenland Plate kinematic models, differing slightly in the timing, magnitude, and direction of motion, are tested. Results show that the Greenland Plate's general northward motion promotes growing anticlines in the entire Barents Sea shelf. Our numerical models suggest that the fan‐shaped pattern of cylindrical anticlines in the Barents Sea can be associated with the Eurekan deformation concurrent to the initial rifting and early seafloor spreading in the northeast Atlantic. The main contraction phase in the SW Barents Sea coincides with the timing of continental breakup, whereas the peak of deformation predicted for the NW Barents Sea occurred at later times. Svalbard has experienced a prolonged period of compressional deformation. We conclude that Paleogene Greenland Plate kinematics are a likely candidate to explain contractional structures in the Barents Sea.

中文翻译:

巴伦支海的变形分析与格陵兰-欧亚大陆板块边界上的古近纪转换有关

晚白垩世-新生代的收缩构造在巴伦支海很普遍。虽然尚不清楚变形的确切年代,但只能推断出收缩比早白垩纪还年轻。一种可能的收缩机制与古近纪时期的格陵兰板块运动学有关。我们使用薄板有限元建模方法来计算巴伦支海内的变形,以响应古近纪期间格陵兰-欧亚大陆的相对运动。沉积物在地下断层之上的3D折叠的解析解用于评估折叠的可能性。测试了两个现有的格陵兰板块运动学模型,它们在时间,幅度和运动方向上略有不同。结果表明,格陵兰板块' 总体向北运动促进了整个巴伦支海陆架的背斜增长。我们的数值模型表明,巴伦支海中圆柱状背斜的扇形模式可能与Eurekan变形有关,同时东北大西洋地区开始出现裂谷和早期海床扩散。巴伦支西南海的主要收缩期与大陆破裂的时间相吻合,而西北巴伦支海所预测的形变高峰则在以后发生。斯瓦尔巴群岛经历了长时间的压缩变形。我们得出的结论是,古近纪格陵兰板块运动学可能是解释巴伦支海收缩构造的候选者。我们的数值模型表明,巴伦支海中圆柱状背斜的扇形模式可能与Eurekan变形有关,同时东北大西洋地区开始出现裂谷和早期海床扩散。巴伦支西南海的主要收缩期与大陆破裂的时间相吻合,而西北巴伦支海所预测的形变高峰则在以后发生。斯瓦尔巴群岛经历了长时间的压缩变形。我们得出的结论是,古近纪格陵兰板块运动学可能是解释巴伦支海收缩构造的候选者。我们的数值模型表明,巴伦支海中圆柱状背斜的扇形模式可能与Eurekan变形有关,同时东北大西洋地区开始出现裂谷和早期海床扩散。巴伦支西南海的主要收缩期与大陆破裂的时间相吻合,而西北巴伦支海所预测的形变高峰则在以后发生。斯瓦尔巴群岛经历了长时间的压缩变形。我们得出的结论是,古近纪格陵兰板块运动学可能是解释巴伦支海收缩构造的候选者。而西北巴伦支海所预测的变形峰值则出现在较晚的时间。斯瓦尔巴群岛经历了长时间的压缩变形。我们得出的结论是,古近纪格陵兰板块运动学可能是解释巴伦支海收缩构造的候选者。而西北巴伦支海所预测的变形峰值则出现在较晚的时间。斯瓦尔巴群岛经历了长时间的压缩变形。我们得出的结论是,古近纪格陵兰板块运动学可能是解释巴伦支海收缩构造的候选者。
更新日期:2020-10-22
down
wechat
bug